Noticias de turismo y viajes

MAPA TOURS LANZA SU NUEVO CATÁLOGO DE VIAJES POR EUROPA PARA 2023

Mapa Tours - Catalogo de Viajes por Europa

El tour operador MAPA TOURS , que forma parte de MAPA GROUP TRAVEL, ha lanzado su nuevo catálogo de viajes por Europa , basado en atractivos circuitos para descubrir los mejores destinos del continente entre mayo y diciembre de 2023.

Según la dirección comercial de MAPA TOURS, “afrontamos este año con muchas ganas e ilusión. Llevamos meses destinando todos nuestros esfuerzos a presentar novedades en cuanto a viajes, destinos y rutas; así como a mejorar notablemente los servicios incluidos en cada destino, con el fin último de asegurar una experiencia completa de viaje”. 

Como consecuencia de este trabajo, ha surgido la operativa más sólida, estimulante, competitiva, completa, variada y segura del mercado español para descubrir Europa. 

Entre los destinos que incluye la mayorista en este nuevo catálogo se encuentran Italia, Inglaterra, Escocia, Irlanda, Francia, Bélgica, Países Bajos, Alemania, Luxemburgo, Suiza, Austria, Hungría, República Checa, Polonia, Rumanía, Bulgaria, los países balcánicos, Grecia, Chipre y Portugal. 

Caben destacar como grandes novedades para 2023 la ampliación de la programación de viajes a la isla italiana de Sicilia , cuya operativa ha sido reforzada para el próximo otoño con vuelos especiales desde diferentes aeropuertos españoles; y las incorporaciones de Chipre y de la región balcánica a su cartera de destinos . En este último caso, pone a disposición de agencias de viajes y del público final interesantes circuitos para descubrir Montenegro, Albania, Bosnia, Serbia y Macedonia del Norte, especialmente con sus vuelos chárter del 19 de junio al 28 de agosto. 

Toda la programación está incentivada con descuentos de hasta el 10% por reserva anticipada, reservando antes del 31 de mayo y, después, con más de 60 días de antelación a la fecha de salida. 

El catálogo, que presenta un diseño actualizado, ya se puede consultar en su página web: http://bit.ly/3IW4u6r. Las reservas pueden realizarse en agencias de viajes, su único canal de venta.

El papel de la mujer en la industria turística

Hoteles santos y air europa organizan un viaje de promoción a mallorca, también te puede interesar, la tradición vinícola en guanajuato, la torre del canónigo, welojets e ibiza luxury destination inauguran juntos la..., las cascadas más bonitas de la ría da..., el operador italiano king holidays se integra en..., sevilla en kayak, un plan diferente para descubrir..., el nuevo centro de arte de guangzhou se..., regreso al mundo de los templarios, con aire..., mapa tours apuesta por polonia en su campaña..., eco-bahía méxico y pam academy se unen para..., privacy overview.

CruceroViajes - Información sobre cruceros

  • _Bienvenidos
  • _Quienes somos
  • Guías de viaje
  • Interesante
  • _Noticias Aéreas
  • _Noticias de Cruceros
  • _Noticias de Turismo
  • _Reviews Cruceroviajes
  • _Reviews Colaboradores
  • _Alicante y cruceros
  • _Vídeo de Alicante

MAPA TOURS, NUEVO CATÁLOGO DE VIAJES POR EUROPA 2023

Mapa Tours

MAPA TOURS LANZA SU NUEVO CATÁLOGO DE VIAJES POR EUROPA PARA 2023

Publicar un comentario, formulario de contacto.

circulo-gaceta

Mapa Tours lanza su nuevo catálogo de viajes por Europa para 2023

mapa tours europa 2023

El tour operador MAPA TOURS, que forma parte de MAPA GROUP TRAVEL, ha lanzado su nuevo catálogo de viajes por Europa, basado en atractivos circuitos para descubrir los mejores destinos del continente entre mayo y diciembre de 2023.

Según la dirección comercial de MAPA TOURS, “afrontamos este año con muchas ganas e ilusión. Llevamos meses destinando todos nuestros esfuerzos a presentar novedades en cuanto a viajes, destinos y rutas; así como a mejorar notablemente los servicios incluidos en cada destino, con el fin último de asegurar una experiencia completa de viaje”.

Como consecuencia de este trabajo, ha surgido la operativa más sólida, estimulante, competitiva, completa, variada y segura del mercado español para descubrir Europa.

Entre los destinos que incluye la mayorista en este nuevo catálogo se encuentran Italia, Inglaterra, Escocia, Irlanda, Francia, Bélgica, Países Bajos, Alemania, Luxemburgo, Suiza, Austria, Hungría, República Checa, Polonia, Rumanía, Bulgaria, los países balcánicos, Grecia, Chipre y Portugal.

Caben destacar como grandes novedades para 2023 la ampliación de la programación de viajes a la isla italiana de Sicilia, cuya operativa ha sido reforzada para el próximo otoño con vuelos especiales desde diferentes aeropuertos españoles; y las incorporaciones de Chipre y de la región balcánica a su cartera de destinos. En este último caso, pone a disposición de agencias de viajes y del público final interesantes circuitos para descubrir Montenegro, Albania, Bosnia, Serbia y Macedonia del Norte, especialmente con sus vuelos chárter del 19 de junio al 28 de agosto.

Toda la programación está incentivada con descuentos de hasta el 10% por reserva anticipada, reservando antes del 31 de mayo y, después, con más de 60 días de antelación a la fecha de salida.

El catálogo, que presenta un diseño actualizado, ya se puede consultar en su página web: http://bit.ly/3IW4u6r . Las reservas pueden realizarse en agencias de viajes, su único canal de venta.

Artículos Relacionados

mapa tours europa 2023

  • Resumen de privacidad
  • Cookies estrictamente necesarias
  • Cookies de terceros
  • Política de cookies

Esta web utiliza cookies para que podamos ofrecerte la mejor experiencia de usuario posible. La información de las cookies se almacena en tu navegador y realiza funciones tales como reconocerte cuando vuelves a nuestra web o ayudar a nuestro equipo a comprender qué secciones de la web encuentras más interesantes y útiles.

Las cookies estrictamente necesarias tiene que activarse siempre para que podamos guardar tus preferencias de ajustes de cookies.

Si desactivas esta cookie no podremos guardar tus preferencias. Esto significa que cada vez que visites esta web tendrás que activar o desactivar las cookies de nuevo.

Esta web utiliza Facebook pixel para recopilar información anónima tal como el número de visitantes del sitio, o las páginas más populares.

Dejar esta cookie activa nos permite mostrar las ultimas noticias en nuestro facebook.

Esta web utiliza Google Analitycs 4 para recopilar información anónima tal como el número de visitantes del sitio, o las páginas más populares.

En la siguiente tabla se describen las cookies que configura gtag.js. Para obtener más información sobre los datos que recoge Analytics, consulte el artículo  Medidas de protección de datos .

¡Por favor, activa primero las cookies estrictamente necesarias para que podamos guardar tus preferencias!

Más información sobre nuestra política de cookies

Enredando

  • Editorial, El mundo según Martínez
  • Entrevistas
  • Con todo el rigor: La opinión del experto
  • Política de privacidad
  • Uso de cookies
  • Publicidad en Enredando
  • Bares y tapas
  • Capital Española de la Gastronomía y Saborea España
  • Eventos Enogastronómicos
  • Con dos huevos
  • A tiro de piedra
  • Xacobeo/Xacobéu/Jacobeo
  • Destino del mes
  • Escapadas románticas
  • España sin ir más lejos
  • Grandes Reportajes
  • Lugares increíbles
  • Mundo alante
  • Pueblos, ciudades y lugares
  • Vamos a la playa ¡oh!¡oh!
  • Viajar a Europa
  • Noticias de los nuestros pueblos y comarcas
  • Concejo Abierto
  • Cultura y fiestas populares, romerias y tradiciones
  • Noticias en llingua llionesa
  • Paisanos en el mundo
  • A Ponferrada me voy
  • Astorga y el país de los maragatos
  • Cabrera/Cabreira
  • Coyanza/Coyança
  • Comarca de El Bierzo
  • El páramo leonés
  • Estás en Babia
  • Laciana/Tsaciana
  • León, Cuna del Parlamentarismo
  • Por tierras de la Bañeza, Valduerna y Valdería
  • Sahagún y Tierra de Campos
  • Béjar y las Sierras
  • Ciudad Rodrigo, tierra de frontera
  • Campo charro
  • Benavente y los Valles
  • Sanabria/Senabria y Carballeda
  • Tierra del pan y … del vino
  • TORO, Civitas Taurensis Superior est in Regno Legionis
  • Esquiar en nuestra tierra
  • Lista roja del patrimonio “del” nuestro Reino
  • Lo más chulo “del” mi pueblo
  • Los castillos de un Reino
  • Los “nuestros” museos
  • Yo estudio aquí
  • Érase una vez, un reino
  • Historia, arte, patrimonio, mitología y leyendas de un Reino
  • Nuestros Parques Nacionales y Reservas de la Biosfera
  • Ruta Jacobea por el Reino de León
  • Vía de la Plata. Ruta A66
  • Viva la montaña viva, viva el pueblo montañés
  • Fogones, figones y productos del Reino
  • Los libros de la nuestra tierra.
  • Territorios transfronterizos: La Llende/La Raya/A Raia
  • Semana Santa
  • VIII Centenario de la Universidad de Salamanca
  • Alojamientos low cost
  • Fidelización, tarjetas y promociones
  • Ofertas especiales, último minuto, puentes y vacaciones
  • Peazo chollo
  • Vuelos low cost
  • Coronavirus, diario de una pandemia
  • La pandemia covid 19 en Salamanca, Zamora y León
  • TABLÓN DE ANUNCIOS SALAMANCA, ZAMORA Y LEÓN
  • Última hora
  • Cultura, teatro, cine, exposiciones y espectáculos
  • MADRID FUSIÓN
  • MOBILE WORLD CONGRESS
  •  SALÓN GOURMETS
  • Festivales y conciertos
  • CARNAVAL…te quiero
  • ES TIEMPO DE NAVIDAD
  • ESPECIAL SAN VALENTÍN
  • ESPECIAL SEMANA SANTA
  • Esto nos suena
  • Blogs, app, webs y redes sociales
  • Telefonía, internet e informática
  • Turismo y viajes
  • Comunidad Autónoma CyL
  • Que no te la cuelen
  • ENREDANDO TV: VÍDEONOTICIAS
  • Mis rincones favoritos
  • Mis garitos favoritos: Sitios guapos dónde tomar un piscolabis.
  • Una ventana con vistas, una puerta al mundo
  • Tendencias y moda urbana
  • DíVino: la cultura del vino
  • Mundo gourmet
  • Libros para leer viajando
  • Rincón de la cerveza
  • Nos vamos de terraceo
  • Sex o no sex
  • Vamos de compras
  • Andando que es gerundio
  • Infraestructuras
  • Por tierra y por mar
  • Volare, oh, oh…
  • Campamentos y campus deportivos
  • Deportes, nieve y multiaventura
  • Escuela de tiempo libre
  • Viajes de estudiantes
  • Estudiar un Idioma
  • Ocio y tiempo libre
  • Parques temáticos
  • El mundo del single
  • Preparar un viaje
  • Qué ver y que hacer
  • Por esos mundos de Dios
  • Turismo activo y turismo rural
  • Turismo de salud y spa
  • Turismo en Castilla y León
  • Turismo familiar y viajar con niños y/o mascotas
  • Turismo LGTBI+
  • Un finde diferente
  • Vacaciones solidarias
  • Biblioteca on-line
  • Carta Europea de la Información Juvenil
  • Principios para la Información Juvenil On line
  • Carnés para jovenes: Joven europeo, ISIC, ITIC, IYTC
  • Canales Institucionales Europeos
  • Canales de turismo
  • Actividades
  • Asociacionismo y Voluntariado
  • Becas, formación y educación
  • Campos de trabajo
  • Empleo y emprendimiento
  • Salud y bienestar joven
  • Estudiar y trabajar en Europa
  • Intercambios juveniles
  • Programas Europeos

Mapa Tours lanza su nuevo catálogo de viajes por Europa para 2023

El tour operador “Mapa Tours”, que forma parte de Mapa Group Travel, ha lanzado su nuevo catálogo de viajes por Europa, basado en atractivos circuitos para descubrir los mejores destinos del continente entre mayo y diciembre de 2023.

Mapa Tours

Como consecuencia de este trabajo, ha surgido la operativa más sólida, estimulante, competitiva, completa, variada y segura del mercado español para descubrir Europa.

Entre los destinos que incluye la mayorista en este nuevo catálogo se encuentran Italia, Inglaterra, Escocia, Irlanda, Francia, Bélgica, Países Bajos, Alemania, Luxemburgo, Suiza, Austria, Hungría, República Checa, Polonia, Rumanía, Bulgaria, los países balcánicos, Grecia, Chipre y Portugal.

Caben destacar como grandes novedades para 2023 la ampliación de la programación de viajes a la isla italiana de Sicilia, cuya operativa ha sido reforzada para el próximo otoño con vuelos especiales desde diferentes aeropuertos españoles; y las incorporaciones de Chipre y de la región balcánica a su cartera de destinos. En este último caso, pone a disposición de agencias de viajes y del público final interesantes circuitos para descubrir Montenegro, Albania, Bosnia, Serbia y Macedonia del Norte, especialmente con sus vuelos chárter del 19 de junio al 28 de agosto.

Toda la programación está incentivada con descuentos de hasta el 10% por reserva anticipada, reservando antes del 31 de mayo y, después, con más de 60 días de antelación a la fecha de salida.

El catálogo, que presenta un diseño actualizado, ya se puede consultar en su página web . Las reservas pueden realizarse en agencias de viajes, su único canal de venta.

Compártelo:

  • Haz clic para compartir en Twitter (Se abre en una ventana nueva)
  • Haz clic para compartir en Facebook (Se abre en una ventana nueva)

Relacionado

También te puede interesar....

madrid

Madrid publica el mapa con la ubicación de las viviendas de uso turístico con licencia municipal

ARATUR 2024 León

Aratur vuelve a convertirse en cita de referencia y punto de encuentro para aquellos que quieran conocer de primera mano todas las ofertas y novedades del sector turístico.

La Alhambra recibe y homenajea a su 'visitante un millón'

La Alhambra recibe y homenajea a su ‘visitante un millón’

Medallas Edelweiss del Clúster de Turismo Sostenible.

Entregadas en Teruel de las Medallas Edelweiss del Clúster de Turismo Sostenible.

Parador de Bielsa

Paradores celebra el Día Europeo de los Parques con EUROPARC para difundir y preservar los espacios protegidos de España

Parque Nacional de Ordesa

Aragón ofrece rutas guiadas gratuitas este 26 de mayo para celebrar el Día Europeo de los Parques

Utilizamos cookies.

Este sitio web utiliza cookies para medir y obtener datos estadísticos de la navegación de los usuarios, y que el visitante tenga la mejor experiencia de usuario. Puedes configurar y aceptar el uso de cookies a continuación.

Ofertas de la semana   ¡Date un chapuzón!   Hasta -50%

Circuitos y viajes por Europa

Encuentra el circuito adecuado para ti en Europa. Tenemos 10349 aventuras en Europa, empezando desde un día de duración, y el circuito más largo de 61 días. El mes más popular para ir es Septiembre, con la mayor cantidad de salidas.

250+ viajes organizados por Europa con 88,176 reseñas

Circuito Majestuosa Europa

  • Autobus / Bus
  • Navidad y Año Nuevo

Majestuosa Europa

La excursión estaba muy organizada. El hotel y la comida son adecuados.

Circuito Escapada a Europa

Escapada a Europa

Era la primera vez que iba a Europa, en general el recorrido es bueno.
  • 10% de depósito en algunas fechas Algunas fechas de salida te ofrecen la posibilidad de reservar este circuito con un depósito más pequeño.

Circuito Descubrimiento de Europa - verano, Inicia en Londres, clásico, 12 días

Descubrimiento de Europa - verano, Inicia en Londres, clásico, 12 días

Ri fue realmente la mejor gestora de viajes de contiki. Hizo que nuestra experiencia fuera la mejor
  • €100 de depósito en algunas fechas Algunas fechas de salida te ofrecen la posibilidad de reservar este circuito con un depósito más pequeño.

Circuito Horizonte Europeo (Inicio Londres, Fin Londres, 11 Días)

Horizonte Europeo (Inicio Londres, Fin Londres, 11 Días)

Increíble, Remi tiene las mejores recomendaciones para cada lugar que visitamos.

Circuito Lo mejor de Europa central

  • Aventura Activa

Lo mejor de Europa central

La excursión Intrepid fue fantástica. Se lo recomiendo a cualquiera que esté interesado en unas vacaciones estupendas.

Circuito La gran aventura

La gran aventura

El resto de hoteles eran de buen nivel. Mi mujer iba en silla de ruedas y el personal de la excursión fue de gran ayuda.

Circuito Joya de Europa

Joya de Europa

Tuve la oportunidad de conocer a gente de todo el mundo y todos son de personalidades muy agradables.

Circuito Experiencia Báltica

Experiencia Báltica

Todas las ciudades visitadas tenían su "Ciudad Vieja", pavimentada con adoquines. Fue un recorrido fascinante por la historia de esta parte de Europa, desde la época medieval hasta nuestros días.

Circuito Todo sobre los Balcanes (hoteles de 4 estrellas)

Todo sobre los Balcanes (hoteles de 4 estrellas)

Fue una experiencia increíble en conjunto, visitamos varios lugares diferentes culturas diferentes y lleno de historia.
  • €150 de depósito en algunas fechas Algunas fechas de salida te ofrecen la posibilidad de reservar este circuito con un depósito más pequeño.

Circuito Rin romántico - dirección sur 2024

  • Crucero fluvial

Rin romántico - dirección sur 2024

Me encantó el recorrido y las excursiones incluidas. Además, ¡una discoteca por la noche sería genial!

Circuito Encantos de Reino Unido e Irlanda en verano - 8 días

Encantos de Reino Unido e Irlanda en verano - 8 días

La experiencia fue excelente, sin duda lo recomendaría a mis amigos y familiares que me visiten.

Circuito Descubriendo los Balcanes (hoteles de 4 estrellas)

Descubriendo los Balcanes (hoteles de 4 estrellas)

El tiempo era suficientemente bueno para nadar, y recibí una gran introducción a la tierra y sus gentes.

Circuito De Zagreb a Atenas: Adriático y capitales antiguas

De Zagreb a Atenas: Adriático y capitales antiguas

Excelente excursión con un guía fantástico. Buen equilibrio entre historia/cultura y actividades.

Circuito De Dubrovnik a Atenas: playas y fortalezas

De Dubrovnik a Atenas: playas y fortalezas

El viaje en su conjunto es una combinación equilibrada de experiencias en la naturaleza, ciudades, cultura y oportunidades de fiesta.

Circuito La esencia de Inglaterra e Irlanda

La esencia de Inglaterra e Irlanda

Gran viaje con comidas excelentes excepto la cena en el Holiday Inn York.
  • Circuitos Europa Occidental (6977)
  • Circuitos Mediterráneo (4818)
  • Circuitos Europa Central (2406)
  • Circuitos Balcanes (2341)
  • Circuitos Reino Unido y Gran Bretaña (747)
  • Circuitos Nórdicos / Escandinavia (623)
  • Circuitos Europa del Este (507)
  • Circuitos Báltico (174)
  • Circuitos Italia (1201)
  • Circuitos Grecia (886)
  • Circuitos Alemania (672)
  • Circuitos Turquía (671)
  • Circuitos Francia (625)
  • Circuitos España (571)
  • Circuitos Croacia (409)
  • Circuitos Portugal (331)
  • Circuitos Islandia (272)
  • Circuitos Austria (266)
  • Circuitos Irlanda (245)
  • Circuitos Rumanía (203)
  • Circuitos Escocia (190)
  • Circuitos Inglaterra (169)
  • Circuitos Albania (139)
  • Circuitos Noruega (124)
  • Circuitos Finlandia (99)
  • Circuitos Suiza (96)
  • Circuitos Eslovenia (90)
  • Circuitos Bosnia (81)
  • Circuitos Países Bajos (75)
  • Circuitos Polonia (56)
  • Circuitos República Checa (54)
  • Circuitos Bulgaria (47)
  • Circuitos Suecia (43)
  • Circuitos Montenegro (29)
  • Circuitos Serbia (23)
  • Circuitos Malta (23)
  • Circuitos Eslovaquia (21)
  • Circuitos Macedonia (17)
  • Circuitos Hungría (15)
  • Circuitos Moldavia (14)
  • Circuitos Svalbard (13)
  • Circuitos Estonia (12)
  • Circuitos Gales (10)
  • Circuitos Irlanda del Norte (10)
  • Circuitos Dinamarca (10)
  • Circuitos Lituania (9)
  • Circuitos Bélgica (9)
  • Circuitos Letonia (6)

Estilos de viaje

  • Grupo pequeño (3002)
  • Presupuesto (1136)
  • Lujo (1340)
  • Viajeros solos (8929)
  • Para parejas (4703)
  • Adultos jóvenes (444)
  • Mayores (5173)
  • Grupo (7949)
  • Totalmente guidado (6877)
  • Familia (6259)
  • Explorador (5328)
  • Personalizado (3266)
  • Cultural (2806)
  • Privado (2086)
  • Crucero fluvial (1574)
  • Parcialmente guiado (1567)
  • Autoguiado (1541)
  • Autobus / Bus (1199)
  • Bicicleta (863)
  • Senderismo y Trekking (790)
  • Aventura Activa (708)
  • Vuelos Intl. Incluídos (237)
  • Adaptado (183)
  • Comida y Culinaria (157)
  • Conducción autónoma (153)
  • Crucero Oceánico (149)
  • Tren y ferrocarril (111)
  • Aurora Boreal (96)
  • Festival y Eventos (64)
  • Romántico (19)
  • Educativo (17)
  • Salud, Spa y Bienestar (17)
  • Luna de miel (13)
  • Viajes Gay (7)
  • Jeep y 4x4 (6)
  • Subirse/Bajarse (5)
  • Circuitos de 3 Días (593)
  • Circuitos de 7 Días (2878)
  • Circuitos de 10 Días (4179)
  • Circuitos de 2 Semanas (1478)
  • Circuitos de 3 Semanas (972)
  • Circuitos de 4 Semanas (190)
  • Circuitos de Más De Un Mes (52)
  • Primavera 2024 (176)
  • Verano 2024 (7778)
  • Otoño 2024 (8096)
  • Invierno 2024 / 2025 (3149)
  • Primavera 2025 (4333)
  • Verano 2025 (3347)
  • Otoño 2025 (3301)
  • Invierno 2025 / 2026 (1151)
  • Mayo 2024 (2944)
  • Junio 2024 (6851)
  • Julio 2024 (6816)
  • Agosto 2024 (7023)
  • Septiembre 2024 (7405)
  • Octubre 2024 (6475)
  • Noviembre 2024 (3416)
  • Diciembre 2024 (2907)
  • Enero 2025 (2052)
  • Febrero 2025 (2070)
  • Marzo 2025 (2672)
  • Abril 2025 (2882)

Circuitos Europa con salida desde

  • Empieza desde Atenas (767)
  • Empieza desde Estambul (544)
  • Empieza desde Londres (453)
  • Empieza desde Roma (450)
  • Empieza desde Madrid (337)
  • Empieza desde Amsterdam (309)
  • Empieza desde París (277)
  • Empieza desde Budapest (251)
  • Empieza desde Bucarest (242)
  • Empieza desde Dublín (236)

Descubre TourRadar

  • Ver todos los operadores turísticos en Europa
  • 12 días de viaje romántico por el sur de la India desde Kochi - todo incluido
  • Excursión a los Tres Pasos del Everest
  • Excursión 8 días relajación y exploración del desierto
  • Circuito en helicóptero al campamento base del Everest
  • ¡Las ofertas de viajes del Travel Tuesday volverán en 2024!
  • Paquete familiar y 2 Niños gratis - 03 Parques Temáticos
  • Vacaciones en familia en Camboya de Phnom Penh a Siemreap, Angkor Wat
  • Buscador de viajes

Busque su circuito

Campañas ver todos.

  • Oriente Medio 36
  • VUELOS ESPECIALES 38
  • MAPA SENIOR 36

Características programas Ver todos

mapa tours europa 2023

  •  >>

RESULTADOS DE LA BÚSQUEDA

mapa tours europa 2023

ITI726 - EGIPTO CLASICO ROULETTE

mapa tours europa 2023

ITI751 - JORDANIA FASCINANTE VLC

mapa tours europa 2023

ITI751 - JORDANIA FASCINANTE MAD

mapa tours europa 2023

ITI751 - JORDANIA FASCINANTE BIO

mapa tours europa 2023

ITI751 - JORDANIA FASCINANTE AGP

mapa tours europa 2023

ITI751 - JORDANIA FASCINANTE BCN

mapa tours europa 2023

ITI780 - DESCUBRIENDO DUBAI

mapa tours europa 2023

ITI753 - JORDANIA, DUNAS Y NABATEOS BCN

mapa tours europa 2023

ITI753 - JORDANIA, DUNAS Y NABATEOS BIO

mapa tours europa 2023

ITI753 - JORDANIA, DUNAS Y NABATEOS AGP

  • GO TO "MY TRIP"
  • TRAVEL AGENCIES LOGIN

mapa tours europa 2023

Quick Access

mapa tours europa 2023

QUALITY A Holistic Concept

Your travel satisfaction is our duty, vocation and challenge. Quality at the best price is our mission and objective. Quality in the purchase process, quality in the itinerary, human quality , hotels quality, meals.

GUARANTEES Safety, trust and reliability

Safety, trust and reliability are essential cornerstones. Guaranteed departures, guaranteed prices, year round departures, emergency phone number, insurance included.

PRICES Very competitive prices

One of our duties is striving to achieve the best quality/price ratio in the market . When you compare prices remember: the hotels, prices are guaranteed, no gratuities/tips, our itineraries.

FLEXIBILITY A Customized Trip

Each person is different; every one of us has our own needs and preferences. At Europamundo, we believe that it is very important for you to be able to put together a trip that is tailored to your requirements. Our organized trips are unique in this respect.

New Tool: Custom Brochure

Before you buy the highest guarantee and assurance.

YOUR VACATIONS ARE VERY IMPORTANT! What guarantees do Europamundo offer?

  • A JTB Group Company
  • One Of The Largest Coach Tour Operators In The World
  • A member of the UNWTO
  • Company Affiliated to WTTC

A world of technology at the service of travel agents

Our website is designed so that it is as easy as possible for travel agents to find and provide a quote for our trips with all our flexible options., the end customer can also carry out a search of the trips, but confirmation should always be done through the travel agency., from the my trip page, you can access the information on the exact itinerary that the customer bought, river cruises.

The best River Cruises 2024

logotipo de europamundo by politours

  • 10 ships / 4 companies.
  • More than 100 departures.
  • Rhine, Danube, Netherlands, Croatia and Montenegro.
  • 18 countries, 82 cities.
  • Guaranteed Service in English.
  • Online Availability and Immediate Confirmation.
  • Unique combinations with land tours.
  • Service of Excellence onboard with the best Gastronomy.

logo for tour with privatizable option

Privatized Tours

Choose a tour from our catalogue with the stamp “Privatized Tour” and turn it into a private tour.

Recommended for groups of friends, families or for people who, because of their health conditions, can be considered people from a high-risk group.

  • Prepared for groups of 2 to 7 people.
  • Taken in a private vehicle driven by your tour guide.
  • With the same itinerary and services as the catalogue tour but with small modifications (see general conditions)
  • 80% discount for children under 3 years old
  • 5% discount for the third person traveling in triple room

logo for trip styles tours

Choose a circuit from our travel menu to enjoy and discover, on routes full of experiences, the hidden and surprising treasures of a region or country.

Recommended for groups of friends or family who want to do a tour in private, usually a regional one and short in duration.

  • Made in a private vehicle driven by your guide.
  • Circuits for all tastes: Historical, Adventure, Cultural, etc.
  • With very varied services, depending on the type of circuit selected
  • 5% discount for the third person traveling in triple

Our Circuits on Sale

Did you know that europamundo has tours in other languages.

All markets Brochures

see Tours in Spanish

Travel with us.

WE INCLUDE SIGHTSEEING TOUR with local guide (Parliament, the River Thames, The Tower of London, Buckingham Palace and the “changing of the guards”). EVENING TRANSFER to the joyful area of Soho, where you can dine at your preferred restaurant.

WE INCLUDE SIGHTSEEING TOUR with local guide, entrance to EIFFEL TOWER (2nd floor) and BOAT RIDE on River Seine. EVENING TRANSFER to the Montmartre district, including FUNICULAR ride, and several restaurant option e.g. Indian. EVENING TRANSFER to the area of Gare du Nord, the home of Paris’ Indian community with plenty French or ethnic dining options.

WE INCLUDE SIGHTSEEING TOUR with local guide and entrance to ROMAN COLOSSEUM and entrance to ST. PETER’s CATHEDRAL. EVENING TRANSFER to the lively neighborhood of Esquilino with Italian, Indian, Chinese and international restaurants. EVENING TRANSFER to the area of Via Cavour with all sorts of restaurants.

WE INCLUDE SIGHTSEEING TOUR with local guide, entrance to the bullfighting arena “LAS VENTAS” and walking tour by the RETIRO PARK. EVENING TRANSFER to Gran Via area with a wide variety of restaurants including Indian. EVENING TRANSFER to Plaza Oriente in front of the Royal Palace close to many local and ethnic restaurants.

SUSTAINABLE Tourism

Europamundo is an affiliated unwto member. our trips are not just to the big cities, we also visit small towns and most isolated areas in which there is no overcrowding; opening tourism opportunities..

We have our own code of ethics, honesty, tolerance and coexistence of cultures

A portion of the value of your trip will be DONATED to the Europamundo foundation.

We compensate 100% of our CO2 footprint

Tourism allows us to know, understand and learn from other cultures. We believe in diversity.

EUROPAMUNDO Mobile App

All of Europamundo right in your pocket. New App. Go to AppStore or PlayStoree

Wellcome to Europamundo Vacations, your in the international site of:

Bienvenido a Europamundo Vacaciones, está usted en el sitio internacional de:

flag Malaysia

logo

Pre-sale starts Mar. 6th at 10am local time.

General on-sale starts mar. 8th at 10am local time..

  • Spotify Spotify logo
  • Apple Music Apple Music logo
  • YouTube YouTube logo
  • Instagram Instagram logo
  • Facebook Facebook logo
  • Consejos Viajeros
  • Festividades
  • Gastronomía

Logotipo El Viajero Feliz

7 aplicaciones para entretenerte mientras esperas en el aeropuerto

mapa tours europa 2023

Una ruta alternativa para disfrutar del Camino que cada vez eligen…

Cómo aprovechar al máximo tu estancia en Playa del Carmen con un presupuesto ajustado

Cómo aprovechar al máximo tu estancia en Playa del Carmen con…

¿Cómo usar mi tarjeta de crédito en mis próximas vacaciones?

¿Cómo usar mi tarjeta de crédito en mis próximas vacaciones?

Hablar ingles para viajar

La importancia de hablar inglés para viajar

Casas de escritores famosos

10 casas de escritores famosos que puedes visitar

las mejores tarjetas para viajar

PS5 vs. Xbox Series X

retiros de yoga y meditacion en mallorca

Retiros de Yoga y meditación en Mallorca: ¡para relajarse!

Qué ver en Ubud

Qué ver en Ubud, Bali | 10 lugares imprescindibles

¡Descubre los mejores bares alrededor mundo!

¡Descubre los mejores bares alrededor mundo!

Destinos del mundo donde más se consume helados

Destinos del mundo donde más se consume helados

salda mexicana

Salsas que debes probar en tu viaje a México

10 platos típicos de Navidad

10 platos típicos de Navidad | Recetas navideñas alrededor del mundo

Comida típica de Polonia

Comida típica de Polonia | 10 platos imprescindibles

Viajar en un tour por europa este 2023: todo lo que debes saber.

mapa tours europa 2023

Una de las experiencias de viaje más emocionantes que cualquiera podría tener es aquella viajando por Europa. Sitios como el Reino Unido, Francia, Alemania, Italia, España e Irlanda tienen mucho para ofrecer a los viajeros, desde sus principales atracciones hasta sus destinos naturales escondidos. Incluso puedes conseguir tours a Europa desde México .

Los tours por Europa prometen una aventura única de la que podrás disfrutar durante todo el año. Si estás programando un viaje a Europa durante el 2023, este artículo te ofrece una guía para que puedas planificar y prepararte adecuadamente para tal acontecimiento.

Índice de Contenido

Viajar a Europa es una aventura: no te la pierdas

viajar en un tour por Europa

Al viajar por Europa tendrás la oportunidad de visitar los países clave de este continente. Recorrer sus asombrosos destinos turísticos, conocer a su gente acogedora y vivir una experiencia de viaje totalmente individual.

Aparte de ver todas estas atracciones, existen otros factores:

  • La preparación.
  • Los papeles legales.
  • La planificación de las paradas de tu tour.
  • El presupuesto y los cambio por el covid-19 que debes considerar antes de emprender el viaje.

Ventajas de viajar en un tour.

Viajar en un tour es una excelente manera de aprovechar al máximo tu viaje por Europa. Al contratar este servicio de un tour, entrarás en posesión de un paquete incluyente que incluirá lo siguiente:

Traslado de todos los sitios turísticos, parques y atracciones turísticas.

  • Duración del tour.
  • Transporte.
  • Entradas a los museos.
  • Actividades divertidas como talleres de cocina, visitas a restaurantes locales y alojamiento seguro.

Al planear un tour con la ayuda de profesionales, experimentarás un viaje relajante y sin preocupaciones . La agencia de viajes se encargará de todos los detalles, desde los traslados y visitas a los diferentes puntos de interés, hasta la reserva de alojamiento y los traslados.

Esto permitirá no solo una planificación más fácil y rápida, sino que tendrás acceso a información sobre los puntos turísticos y lugares para visitar durante el recorrido.

Aspectos a tener en cuenta para viajar a Europa

viajar en un tour por Europa

1. Elegir el mejor tour

Si has decidido contratar un tour, es necesario que establezcas cuáles son tus prioridades antes de realizar cualquier contratación. Busca tours cuyos precios sean justos para tu presupuesto .

Además, considera las características del tour como número de participantes, transporte, alojamiento, entradas a museos, horario de tu tour y los destinos a los que puedes llegar.

2. ¿Cómo influyen los cambios de covid-19?

Dada la situación actual generada por la pandemia de covid-19, los viajeros deben tener en cuenta cuáles serán los cambios que se realizarán durante la planificación , preparación y ejecución del viaje.

Esto incluye requisitos relacionados a la documentación personal, exámenes médicos, exámenes de prueba de covid-19, requisitos de visas, seguros de viaje, protocolos de seguridad y precios de viaje ajustados a la situación.

3. El presupuesto necesario para el tour

El viaje por Europa no es barato, pero con una adecuada planificación puedes reducir los costos iniciales.

Generalmente, un tour completo, incluyendo el traslado, alojamiento, entradas, actividades y comidas, puede tener entre $1,500 y $7,000 dólares según la duración, el número de participantes, el transporte, el destino y otros factores relacionados.

¿Qué lugares puedes visitar durante el tour?

viajar en un tour por Europa

Si has programado un tour por Europa durante el 2023, algunos de los destinos turísticos más populares que puedes visitar son las siguientes:

  • El Parlamento Europeo en Bruselas.
  • Big Ben en el Reino Unido.
  • Louvre en París, la Torre Eiffel.
  • La Plaza de España en Madrid.
  • Calle de las Tradiciones en Roma.
  • La Puerta de Brandenburgo en Berlín.
  • Tontería de La Giganta en Florencia.
  • La Bahía de Dublín en Irlanda.
  • ¿Cómo prepararse para un tour por Europa?

Para emprender un tour por Europa cargado de éxito necesitas prepararte adecuadamente. Esto incluye el chequeo de tu salud con tu doctor antes de viajar, verificar la documentación necesaria para cruzar las fronteras. Asimismo, obtener un seguro de viaje, buscar ofertas, leer las reseñas de otros viajeros sobre el tour.

No olvides hacer tu maleta sin olvidar artículos básicos como los documentos personales , primeros auxilios, aparatos electrónicos y otros elementos imprescindibles para el tour.

Los mejores tours para viajar a Europa en 2023

Viajar en un tour por Europa

A continuación, se presenta los mejores tours para tener en cuenta en tu viaje a Europa en 2023, ¿estás preparado para conocerlas? Entonces, préstale atención a lo siguiente:

  • Europa Gran Reserva: 15 días Paris-Roma
  • Italia Imperial: 9 días Milan-Roma
  • Tour Europa Esencial: 18 días Madrid-Madrid
  • Viaje a Europa en 400 horas: 18 días Madrid-Roma
  • Aventura a Europa en Breve: 11 días Paris-Roma
  • Europa Joker: 22 días Paris-Roma
  • París, Londres, Ámsterdam e Italia (avión) + Ext. Costa Azul y España: 20 días Paris-Madrid

En conclusión, hemos aprendido los fundamentos principales para la planificación de un viaje a Europa durante el 2023 . Asimismo, incluye las ventajas de optar por un tour, como escoger el mejor tour que se adapte a tus necesidades, los cambios que surgirán durante la planificación del viaje relacionados a covid-19.

Además, del presupuesto aproximado para la organización del tour, también están los lugares que puedes visitar durante el recorrido. Es importante prepararse adecuadamente para tu viaje y los conocimientos necesarios si quieres estar listo en tal experiencia. Utiliza esta guía como una herramienta para planificar tu próximo viaje por Europa durante el 2023.

mapa tours europa 2023

  • Newsletters
  • EPComunicación
  • Configuración de Cookies

Portales temáticos

Chance

  • noti mérica
  • mercado financiero
  • Generación de Oportunidades
  • Verificaciones

Mapa Tours apuesta por los Balcanes para este verano

Mapa Tours apuesta por los Balcanes para este verano.

Boletín de EP Turismo

MADRID, 9 Feb. (EUROPA PRESS) -

Mapa Tours ha lanzado una nueva programación especial para este verano y apuesta por los países balcánicos, ofreciendo dos completos circuitos de ocho días: 'Bellezas de Montenegro y Albania' y 'Tesoros de los Balcanes', según un comunicado.

Esta programación contará con salidas en vuelo chárter del 19 de junio al 28 de agosto, todos los lunes desde Madrid y los martes desde múltiples provincias españolas: Santiago (27 de junio), Granada (4 de julio), Pamplona (1 de julio), Vitoria (18 de julio), Oviedo (25 de julio), Zaragoza (1 de agosto), Valladolid (8 de agosto), Barcelona (15 de agosto) y Bilbao (22 de agosto).

El turoperador incluye en ambos circuitos los billetes de avión y las tasas aeroportuarias, alojamiento y desayuno, visitas indicadas en cada programa, transporte en autobús, guía acompañante de habla hispana durante el recorrido, visitas guiadas con audio individual y entradas a los diferentes lugares de interés y seguro de viaje.

'Bellezas de Montenegro y Albania' se basa en un completo recorrido por Montenegro, cuya primera parada es Podgorica, su capital, y posteriormente se visitan las ciudades amuralladas de Kotor y Budva.

Además, en Albania, su capital, Tirana, sorprende por sus edificios coloridos de las épocas otomana, fascista y soviética. Se incluyen visitas a lugares declarados Patrimonio de la Humanidad por la Unesco como el casco antiguo de Gjirokastr y el recinto arqueológico de Butrinto, junto con otras como Himare y Berat.

En este programa existe la posibilidad de realizar una excursión en barco a la isla griega de Corfú, bañada por el mar Jónico, donde se puede encontrar un amplio patrimonio arquitectónico de herencia veneciana.

Por otro lado, con el circuito 'Tesoros de los Balcanes', los viajeros tendrán la oportunidad de descubrir, además de Montenegro y Albania, los países de Bosnia, Serbia y Macedonia.

En Bosnia, la primera parada es Mostar, conocida por el emblemático puente medieval de un solo arco Stari Most. Y para embarcarse en la historia del país y del mundo entero, en su capital, Sarajevo, hay diferentes museos, que cuentan el pasado local, incluyendo el asesinato del archiduque Franz Ferdinand, que desencadenó la I Guerra Mundial.

Serbia destaca por su cosmopolita capital, Belgrado, en la que es imprescindible visitar la fortaleza de Beogradska Tvrdava, testimonio de la importancia estratégica que tuvo para los imperios romano, bizantino, otomano, serbio y austríaco.

Finaliza el recorrido en Macedonia del Norte, visitando su capital, Skopje, que emana por todos sus rincones una gran historia, con herencia cultural romana, bizantina y otomana. Sorprenden su Puente de Piedra del siglo XV, la fortaleza de Kale y el Antiguo Bazar.

Leer más acerca de:

Logo

Thailand Experience

& the golden triangle, latest europa tours, search tours.

mapa tours europa 2023

01 Mar 24 - 31 Oct 24

mapa tours europa 2023

Grand Holland Tour & the Tulip Festival

01 may 24 - 06 may 23.

01 - 06 May 2024

mapa tours europa 2023

Czech Republic

Czech republic prague, 02 may 24 - 07 may 24.

02 - 07 May 2024

mapa tours europa 2023

North Macedonia

Skopje & ohrid, macedonia -skopje & ohrid, 09 may 24 - 16 may 24.

09 - 16 May 2024

mapa tours europa 2023

The Pearl of Hungary

The pearl of hungary budapest, 18 may 24 - 23 may 24.

18 - 23 May 2024

mapa tours europa 2023

Bavarian Alps

20 may 24 - 24 may 23.

20 - 24 May

mapa tours europa 2023

Istanbul & Cappadocia

23 may 24 - 30 may 24.

23 - 30 May 2024

mapa tours europa 2023

Southern Italy

The best of puglia, 23 may 24 - 27 may 24.

23 - 27 May 2024

mapa tours europa 2023

Krakow - POLAND

27 may 24 - 31 may 23.

mapa tours europa 2023

Sorrento- Capri & the Amalfi Coast

Sorrento, capri & the amalfi coast, 03 jun 24 - 07 jun 24.

03 - 07 June

mapa tours europa 2023

Italy,Switzerland & France

Valle d'aosta, 08 jun 24 - 15 jun 24.

08 - 15 June 2024

mapa tours europa 2023

Italian Jewels

Umbria toscana lazio, 12 jun 24 - 18 jun 24.

12 - 18 June 2024

mapa tours europa 2023

Norwegian Fjords Cruise

Anthem of the seas, 14 jun 24 - 21 jun 24.

14 - 21 June 2024

mapa tours europa 2023

Fatima- Portugal

Fatima - portugal, 14 jun 24 - 18 jun 24.

14 - 18 June 2024

mapa tours europa 2023

North Italy & Bernina Express

Panoramic north italy, 19 jun 24 - 23 jun 24.

19 - 23 June

20 Jun 24 - 24 Jun 24

20 - 24 June

mapa tours europa 2023

Lourdes; France

Lourdes, france, 03 jul 24 - 06 jul 24.

03 - 06 July

mapa tours europa 2023

Wonders of WALES

05 jul 24 - 12 jul 24.

05 - 12 July

MACEDONIA , SKOPJE

05 jul 24 - 12 may 24.

mapa tours europa 2023

Abruzzo; Italy

Abruzzo, italy, 06 jul 24 - 11 jul 24.

06 - 11 July

mapa tours europa 2023

Munich;Salzburg & the Bavarian Alps

Munich,salzburg & the bavarian alps, 06 jul 24 - 12 jul 24.

06 - 12 July

mapa tours europa 2023

Slovenia Croatia Austria

Slovenia, croatia & austria, 06 jul 24 - 16 jul 24.

06 - 16 July

mapa tours europa 2023

06 Jul 24 - 13 Jul 24

06 - 13 July

mapa tours europa 2023

France; Germany & Switzerland

France, germany & switzerland.

mapa tours europa 2023

Grand Tour of

Scandinavia & the fjords, 08 jul 24 - 22 jul 24.

08 - 22 July 2024

13 Jul 24 - 20 Jul 24

13 - 20 July

mapa tours europa 2023

Lago di Garda & the Dolomites

Slovenia & croatia, 15 jul 24 - 22 jul 24.

15 - 22 July

mapa tours europa 2023

Italia delle Meraviglie with a touch of Switzerland

Lago di como & lago maggiore, 15 jul 24 - 21 jul 24.

15 - 21 July

mapa tours europa 2023

KRAKOW & ZAKOPANE

mapa tours europa 2023

Alaska Cruise & Canada

16 jul 24 - 29 jul 24.

16 - 29 July 2024

17 Jul 24 - 21 Jul 24

17 - 21 July

mapa tours europa 2023

Iceland & Ireland

Celebrity cruises, 17 jul 24 - 28 jul 24.

17 - 28 July

18 Jul 24 - 23 Jul 24

18 - 23 July

mapa tours europa 2023

Bella Toscana; Liguria & Cinque Terre

Bella toscana, 20 jul 24 - 27 jul 24.

20 - 27 July

22 Jul 24 - 26 Jul 24

22 - 26 July

mapa tours europa 2023

Trentino Dolomites Gardaland

22 jul 24 - 28 jul 24.

22 - 28 July

27 Jul 24 - 03 Aug 24

27 July - 03 August

mapa tours europa 2023

SWITZERLAND

Splendid switzerland, 02 aug 24 - 09 aug 24.

02 - 09 August

02 Aug 24 - 07 Aug 24

02 - 07 August

mapa tours europa 2023

England; Scotland & Wales

England, scotland & wales, 02 aug 24 - 11 aug 24.

2 -11 August

03 Aug 24 - 10 Aug 24

03 - 10 August

05 Aug 24 - 19 Aug 24

05 - 19 August 2024

05 Aug 24 - 09 Aug 23

05 - 09 August

mapa tours europa 2023

Austria & Czech Republic

Austria,germany & czech rep., 08 aug 24 - 14 aug 24.

08 - 14 August

10 Aug 24 - 17 Aug 24

10 - 17 August

mapa tours europa 2023

Festive Season Holidays

Vienna - austria & slovakia, 12 aug 24 - 18 aug 24.

12 - 18 August

14 Aug 24 - 21 Aug 24

14 - 21 August

17 Aug 24 - 24 Aug 24

17 - 24 August

19 Aug 24 - 25 Aug 24

19 - 25 August

20 Aug 24 - 24 Aug 24

20 - 24 August

mapa tours europa 2023

Thailand Experience & the Golden Triangle

23 aug 24 - 09 sep 24.

23 Aug - 09 Sep 2024 18 Days

23 Aug 24 - 30 Aug 24

23 - 30 August

mapa tours europa 2023

23 Aug 24 - 26 Aug 24

23 - 26 August

24 Aug 24 - 03 Sep 24

24 August - 03 September

24 Aug 24 - 31 Aug 24

24 - 31 August

30 Aug 24 - 06 Sep 24

30 Aug - 06 Sep

31 Aug 24 - 07 Sep 24

31 August - 07 September

01 Sep 24 - 05 Sep 24

01 - 05 November

mapa tours europa 2023

Grand Tour of Portugal

01 sep 24 - 12 sep 24.

01 - 12 September

mapa tours europa 2023

Grand Tour of CHINA

Grand tour of china 17 days, 01 sep 24 - 16 sep 24.

01 - 16 September 2024

mapa tours europa 2023

Grand Tour of Vietnam

02 Sep 24 - 18 Sep 24

02 sep 24 - 08 sep 24.

02 - 08 September

03 Sep 24 - 15 Sep 23

03 - 15 September 2024

Austrian & Italian Alps

04 sep 24 - 13 sep 24.

04 - 13 September

04 Sep 24 - 08 Sep 24

04 - 08 September

05 Sep 24 - 10 Sep 24

05 - 10 September

05 Sep 24 - 09 Aug 24

05 - 09 September

07 Sep 24 - 14 Sep 24

07 - 14 September

07 Sep 24 - 13 Jul 24

07 - 13 September

07 Sep 24 - 14 Jul 24

09 sep 24 - 16 sep 24.

09 - 16 September

11 Sep 24 - 14 Sep 24

11 - 14 September

Grand Holland Tour

11 sep 24 - 16 sep 24.

11- 16 September

11 Sep 24 - 18 Aug 24

11 - 18 September

mapa tours europa 2023

The Best of Salento; Apulia

The best of salento, apulia, 12 sep 24 - 16 sep 24.

12 - 16 September

13 Sep 24 - 19 Sep 24

13 - 19 September

13 Sep 24 - 16 Sep 24

13 - 16 September

13 Sep 24 - 20 Sep 24

13 - 20 September

14 Sep 24 - 19 Sep 24

14 - 19 September

16 Sep 24 - 22 Sep 24

16 - 22 September

20 Sep 24 - 24 Sep 24

20 - 24 September 2024

04 Oct 24 - 07 Oct 24

04 - 07 October

05 Oct 24 - 12 Oct 24

05 - 12 October

07 Oct 24 - 11 Oct 23

07 - 11 October

10 Oct 24 - 15 Oct 24

10 - 15 October

11 Oct 24 - 18 Oct 24

11 - 18 October

12 Oct 24 - 16 Oct 24

12 - 16 October

mapa tours europa 2023

South INDIA

14 oct 24 - 31 oct 24.

14 - 31 October 2024

18 Oct 24 - 25 Oct 24

18 - 25 October

19 Oct 24 - 24 Oct 24

19 - 24 October

19 Oct 24 - 23 Oct 24

19 - 23 October

mapa tours europa 2023

Singapore & Malaysia

16 nov 24 - 25 nov 24.

16-30 November 2024

mapa tours europa 2023

Far East Cruise

Hong kong, singapore, 12 day far east cruise, 05 dec 24 - 23 dec 24.

05 - 23 December 2024

Datos de Contacto

Nombre. es requerido.

E-mail es requerido.

Identificación de usuario

Recuperación de contraseña.

Por favor introduzca su email para reiniciar su contraseña

Aviso Legal y Política de Privacidad

Aviso legal y Política de Privacidad

Debe aceptar el Aviso Legal y Política de Privacidad

Folletos EUROPA 2023 - 2024

Información general, Índice, Seguro y Descuentos

Rutas por España, Caminos de Santiago, Portugal y Marruecos

Rutas por Italia comenzando en Roma

Rutas por Italia comenzando por Milán y Venecia

Rutas por Italia comenzando por París y Londres

Rutas por Croacia y Eslovenia

Rutas por Polonia

Rutas por Paris y Países Bajos

Rutas por Londres y París

Rutas por Capitales Imperiales

Rutas por Escandinavia y Países Bálticos

Circuitos Completos por Europa

Cruceros Fluviales

  • NOMBRE DURACIÓN PDF WORD
  • No solo precio... 2023-24
  • Programación 2023-2024
  • Calidad ideal al mejor precio 2023-24
  • Índice 2023-24
  • Seguros y Descuentos 2023-24
  • Extensiones 2023-2024
  • Noches adicionales, descuentos y traslados 2023-24
  • Posibles cambios de hoteles 2023-24
  • Hoteles seleccionados 2023-24
  • Hoteles alternativos 2023-24
  • Condiciones generales Europa 2023-24
  • Camino de Santiago: De Oporto a Santiago 14 días
  • El Camino de Santiago - Camino Francés 2023 7 días
  • Camino de Santiago: Camino Portugués (Por el interior) 8 días
  • Camino de Santiago: Camino Portugués (Por la costa) 8 días
  • Camino de Santiago: Camino Primitivo 7 días
  • Camino de Santiago: Camino de Fisterra 6 días
  • Camino de Santiago Francés en BICICLETA 7 días
  • Andalucía con Madrid y Costa del Sol (Actualización de precios 21-4-23) 9 días
  • De Madrid a Barcelona por Andalucía y Levante (Actualización de precios 21-4-23) 9 días
  • España y Portugal (Actualización de precios 21-4-23) 9 días
  • Madrid, Portugal, Andalucía, Costa Mediterránea y Barcelona (Actualización de precios 21-4-23) 14 días
  • Península Ibérica y Marruecos (Actualización de precios 21-4-23) 21 días
  • El Norte de España y Portugal (Actualización de precios 21-4-23) 15 días
  • El Sur de España y Marruecos (Actualización de precios 21-4-23) 15 días
  • Fátima y Caminos de Santiago 7 días
  • Capitales Ibéricas 10 días
  • Lisboa y España 11 días
  • Norte de Portugal y Santiago 8 días
  • Las 7 Maravillas de Portugal 9 días
  • Portugal al completo con Santiago 11 días
  • Ibéricos Portugal y España 16 días
  • Portugal Gourmet 10 días
  • Sur de Portugal 6 días
  • Grandes Santuarios Ibéricos con Lourdes 10 días
  • E4077 - EUROPA EM BREVE 2021/23 11 días
  • E4043 - Mercadillos de Navidad 2023 7 días
  • CE3018 - Del Delta Mekong a los templos de Angkor 11 días
  • De los templos de Angkor al Delta Mekong 11 días
  • CE3020 - Las capitales danubianas - 5 días 2023 5 días
  • CE3005 - Las Perlas del Danubio 8 días
  • CE3021 - Del Mar Negro al Danubio Azul 12 días
  • CE3023 - El Rin y sus tesoros, de Basilea a Ámsterdam 8 días
  • CE3024 - El Sena y sus meandros, un río único 7 días
  • CE3025 - Crucero por Aquitania y Burdeos 5 días
  • CE3011 - Crucero por los Castillos del Loira 6 días
  • CE3026 - Crucero por el Duero 8 días
  • CE2027 - Andalucía al completo 8 días
  • CE2028 - Crucero por los encantos de Andalucía y Algarve 8 días
  • CE3029 - Los Tesoros de Venecia 5 días
  • CE3030 - De Venecia a Mantua 7 días
  • CE3031 - De Mantua a Venecia 7 días

Las CONDICIONES GENERALES son de obligada lectura y han de ser explicadas en términos claros al viajero en el momento de la contratación.

Puede acceder a la información completa de este folleto haciendo click en las opciones del menú superior.

mapa tours europa 2023

Elige tu provincia

¿Dónde quieres viajar?

previus

En nuestro folleto de Circuitos , encontrará una selección de los mejores tours a Europa y otros destinos de todo el mundo. En el folleto de Cruceros Fluviales podrá descubrir una nueva forma de viajar, navegando por los mayores ríos de Europa y conociendo las ciudades con más historia del viejo continente.

mapa tours europa 2023

Nuestra aplicación móvil le permite acceder en cualquier momento a la información y documentación de su reserva.

Descargue ya nuestra App.

mapa tours europa 2023

En nuestras guías de viaje encontrará todo lo que necesita para disfrutar de su destino y conocer a fondo las ciudades y monumentos que visita.

Descubra nuevos lugares y emprenda su viaje con nosotros.

Ofertas de vacaciones y viajes organizados

Decía San Agustín que el mundo es un libro y que aquellas personas que no viajan sólo leen una página. Pues bien: para que disfrutes de todos sus capítulos, Panavisión pone en tus manos las mejores ofertas de viajes organizados, perfectos para tus próximas vacaciones de verano, Navidad o Semana Santa, para tus escapadas románticas o, sencillamente, para decir adiós a la rutina.

¡Descubre todo lo que te ofrecemos!

Disfruta de nuestros viajes por Europa

¿Te gustaría descubrir majestuosos paisajes urbanos, monumentos y museos que cautivan por su magnetismo, pero sin necesidad de pasar varias horas en un avión? En ese caso, nuestras ofertas de viajes por Europa son la opción perfecta para ti.

Con nuestras propuestas, recorrer las grandes capitales europeas será más fácil que nunca. Elige entre un apasionante viaje a Ámsterdam , Londres , París o Berlín , entre otras muchas ciudades de vanguardia, y déjate seducir por su modernidad y su inagotable rosario de reclamos turísticos.

Si lo tuyo es el turismo monumental, nada mejor que un completo circuito por Praga, Viena y Budapest , con el que te maravillarás ante el soberbio legado de los Habsburgo. Mención aparte merecen nuestros circuitos por Italia , que te acercarán a las incontables maravillas del Bel Paese . En nuestro sitio web, tienes la posibilidad de reservar viajes a Roma, Florencia, Venecia, Siena, Milán y Nápoles , entre otras urbes que te asombrarán por su abundante patrimonio arquitectónico. Y como no podrían ser de otro modo, también encontrarás espectaculares viajes a Sicilia , donde admirarás monumentos romanos y barrocos vigilados por el sobrecogedor Etna. ¡Al acabar la jornada, no querrás volver a tu hotel!

Además, te acercamos a los fiordos noruegos , las capitales bálticas o a Moscú y San Petersburgo , los dos grandes polos de atracción turística de Rusia.

Las joyas de Turquía y Oriente Medio

¿Qué mejor manera que empezar a conocer Asia que desde su puerta de entrada desde Europa? En efecto, con nuestros viajes a Turquía , tendrás a tu alcance la mágica Estambul , la única ciudad del mundo que bascula entre dos continentes, así como las ciudades subterráneas, las iglesias trogloditas y las Chimeneas de Hadas de la hipnótica Capadocia.

No menos recomendable es decantarte por un inenarrable viaje a Egipto , con el que realizarás un crucero por el Nilo y rendirte a los templos de Asuán o a las extraordinarias pirámides de Guiza , en las inmediaciones de El Cairo . Otro tanto podríamos decir de Jordania , un país que alberga preciosos castillos templarios en el desierto y la onírica Petra , la capital de los nabateos, una ciudad de gran belleza excavada en la roca.

En Asia central, te animamos a no pasar por alto Uzbekistán , uno de los grandes hitos de la Ruta de la Seda, o nuestros viajes a Irán , la antigua Persia, con complejos arqueológicos como el de Persépolis .

Si lo deseas, también podemos llevarte a Israel, un país que conjuga tradición y modernidad. No obstante, si estás buscando un viaje de placer en el que no falte el lujo, prueba con Dubái o Maldivas .

Reserva nuestros viajes por América

¿Estás preparado/a para vivir el sueño americano con nosotros? Para que a esta increíble aventura sea memorable, te traemos diversos circuitos que harán de tus vacaciones en Norteamérica una experiencia irrepetible.

En Panavisión, lo tenemos todo: desde los viajes a Nueva York , la capital del mundo, siempre efervescente bajo la mirada de sus rascacielos y los neones de Broadway, hasta las escapadas a la costa oeste de Estados Unidos , donde te aguardan destinos tan vibrantes como San Francisco , Los Ángeles o Las Vegas , así como Grand Canyon de Colorado , uno de los principales alicientes paisajísticos de la nación más poderosa del mundo. Todo ello sin olvidarnos de la capital, Wahington, D.C. , u otros emblemas de la costa Atlántica, como Philadelphia, Boston o las cataratas del Niágara .

De todos modos, tu periplo por América puede ir mucho más allá: en efecto, con nuestros apasionantes circuitos por Canadá , visitarás Toronto , Quebec , Montreal y Ottawa , la capital del país, una apacible urbe que acoge la sede del Parlamento nacional

Además, no te pierdas los nuevos circuitos por Sudamérica que hemos puesto en marcha con destinos tan atractivos como Argentina y Perú .

Los mejores viajes por Asia

En Asia, uno de nuestras rutas de mayor éxito son los viajes a la India, con los que contemplarás las magníficas fortalezas del Rajastán , ciudades fantasma como Fatehpur Sikri o el Taj Mahal de Agra , el mausoleo más bonito del mundo y un ejemplo incontestable de que el amor todo lo puede.

Asimismo, también te animamos a conocer otros dos países culturalmente muy cercanos al subcontinente asiático: Nepal y Sri Lanka , cuyos paisajes naturales y su espiritualidad te dejarán sin palabras.

Si reservas un circuito por China , disfrutarás de la herencia imperial en Beijing , la capital del País del Centro, la muralla China , el Ejército de Terracota de Xi’an o Shanghái , con el futurista barrio de Pudong, tachonado de rascacielos imposibles, como punta de lanza.

En cambio, si reservas un circuito por Japón , recorrerás rincones como la vibrante Tokyo o Kyoto , capital del país del Sol Naciente durante la época samurái, u Osaka , cuyo precioso castillo es uno de los mejor conservados a nivel nacional.

En Tailandia , además, de las deliciosas playas de Phuket , te espera la constelación de templos de su capital, Bangkok , y enclaves arqueológicos como el de Ayutthaya , la ciudad principal del desaparecido reino de Siam, declarada Patrimonio de la Humanidad por la UNESCO en 1981.

En el sudeste asiático, te invitamos a navegar por el Mekong o acercarte a Camboya para sucumbir a Angkor Wat , el mayor complejo de edificios hindúes del mundo.

Viajes a África a tu medida

¿Estás buscando viajes de aventura? Si es así, nuestros viajes a África subsahariana tienen todos los ingredientes para unas emocionantes vacaciones.

Por ejemplo, si decides sumarte a un circuito por Kenia , disfrutarás de uno de los mejores safaris en África. Allí podrás conocer enclaves como el Parque Nacional de Aberdare , el lago Naivaisha o la Reserva Nacional de Masai Mara , donde serás testigo del día a día de las tribus masáis y de una gran variedad de fauna que incluye antílopes, cebras y gacelas.

En Tanzania , déjate hechizar por la solemnidad del Kilimanjaro , en el que se eleva el volcán Kibo (5.891,8 m) el pico más alto de África. Por descontado, tampoco hay que obviar el lago Manyara o el Parque Nacional de Tarangire y, por descontado, la Reserva Natural de Ngorongoro y la joya de la corona: el parque del Serengeti .

Además, Panavisión también te lleva a otros lugares de impresión, como Sudáfrica , donde se halla el Parque Nacional de Kruger ; las playas de Zanzíbar , en Tanzania , o las cataratas Victoria , en la frontera de Zambia y Zimbaue .

Turismo religioso

Dicen que la fe mueve montañas. Y nuestros viajes, también. Con nuestras propuestas de turismo religioso, podrás conocer algunos de los lugares más emblemáticos de la cristiandad, e incluso, para los creyentes de otras religiones. Como ejemplo, baste citar la Ruta Franciscana , un recorrido que aúna paisajes y espiritualidad, y que te llevará por enclaves como Roma, Asís, el valle de Rieti, Greccio, Fonte Colombo, La Verna, Padua, Florencia, Venecia o Milán .

De todos modos, el abanico de propuestas no se limita aquí: puntualmente, también ofrecemos viajes organizados por otros lugares de peregrinación y devoción, como Tierra Santa .

¿Te hace una escapada?

Cruceros fluviales

En nuestros viajes organizados, no podían faltar los cruceros fluviales , tanto por los principales ríos europeos como del resto del mundo: el Danubio, el Rin, el Ródano, el Volga, el Yanzi… Además, ¿se te ocurre un modo más cómodo de explorar algunas de las regiones más emblemáticas de Europa y otros continentes? Desde las grandes capitales de Europa central hasta Estrasburgo o Colonia , nuestras ofertas en cruceros fluviales son ideales para conocer enclaves inenarrables.

Además, los desplazamientos se realizan por la noche, mientras tú descansas, lo que te ayudará a aprovechar al máximo el tiempo de tus vacaciones. ¿Se puede pedir más?

Éstos son sólo algunos de los muchos destinos que hemos seleccionado para ti, y que incluyen el vuelo y los mejores hoteles.

¡Haz tu reserva y ven a descubrir nuestros chollos de viajes!

  • 4ª Vuelta Navarra: última etapa en directo
  • Copa Naciones júnior: Pericas, 2º en la general del País Vaud

21ª Giro Italia: la etapa en directo

4ª tour noruega: la etapa en directo, 3ª ridelondon (f): la etapa en directo.

  • GP Ciudad Eibar: Gana Blanco y doblete de Laboral Kutxa
  • Vuelta Colonia: la carrera en directo
  • 3ª Boucles Mayenne: la etapa en directo
  • París 2024: Mapa, perfiles y cuotas de participación
  • Vuelta Andalucía féminas: Perfiles de etapa y equipos

Ciclo21 Portal de ciclismo

2ª tour estonia: doblete final de kiskonen.

en Carreras-Clasificaciones INT , Destacada , Internacional , Noticias INT 25/05/2024 0

2ª etapa. Sábado 25 mayo: Gran Premio de Tartu (164,8 km)

Redacción / Ciclo 21

TODAS LAS ETAPAS

X EN DIRECTO

Edición 2023: Rasmus Bøgh Wallin

1ª Vahtra (Vahtra)

Puntos TOP Ciclo 21: Edgar NIETO, 2 (primer español etapa 2.1) / 4 (primer español general 2.1)

CLASIFICACIÓN 2ª ETAPA COMPLETA

GENERAL FINAL COMPLETA

DORSALES OFICIALES

Data powered by FirstCycling.com

Etiqueta: Tour EStonia 2024

Artículos relacionados

Comentar eliminar comentario.

Su dirección de correo electrónico no será publicada.Los campos necesarios están marcados *

Comentario *

  • Carreras y Clasificaciones
  • Top Ciclo 21
  • Vuelta a España
  • Entrevistas
  • Equipos UCI
  • Tour de Francia
  • Giro de Italia
  • Campeonato del Mundo
  • Castilla y León
  • Castilla-La Mancha
  • Ceuta y Melilla
  • Comunitat Valenciana
  • Extremadura
  • BTT / GRAVEL
  • Altimetrías
  • PARACICLISMO
  • Ciclismo Urbano
  • Material / Entrenamiento

NASA’s Europa Clipper Makes Cross-Country Flight to Florida

mapa tours europa 2023

Technicians offload NASA’s largest planetary mission spacecraft, Europa Clipper, from a U.S. Air Force C-17 Globemaster III transport aircraft at the Launch and Landing Facility at NASA’s Kennedy Space Center in Florida on May 23.

Assembled at NASA’s Jet Propulsion Laboratory in Southern California, the spacecraft arrived at the agency’s Kennedy Space Center in Florida on May 23 for launch preparations.

NASA’s Europa Clipper, a spacecraft designed to investigate Jupiter’s icy moon Europa and its potential to support life, arrived in Florida on Thursday, May 23. The spacecraft, assembled at NASA’s Jet Propulsion Laboratory in Southern California, landed aboard a United States Air Force C-17 Globemaster III aircraft at the Launch and Landing Facility at NASA’s Kennedy Space Center.

The mission aims to gather detailed measurements of the moon’s surface, interior, and space environment by performing approximately 50 close flybys, some as low as 16 miles (25 kilometers) from the surface of Europa , which holds a global ocean underneath its ice shell.

“My job for Europa Clipper is to ensure the team meets all the ground and flight requirements to place the spacecraft in the proper orbit to initiate the long journey to Jupiter,” said Armando Piloto, Europa Clipper mission manager for NASA’s Launch Services Program . “The team is excited that the spacecraft is in Florida for processing. We’re pairing Europa Clipper with a fully expendable SpaceX Falcon Heavy rocket to ensure it provides the required performance to explore a destination very far away from Earth.”

mapa tours europa 2023

A U.S. Air Force C-17 Globemaster III transport aircraft carrying NASA’s largest planetary mission spacecraft, Europa Clipper, arrives at the Launch and Landing Facility at the agency’s Kennedy Space Center in Florida on May 23.

Teams at Kennedy spent several hours offloading Europa Clipper before transferring it to the Payload Hazardous Servicing Facility, where they will process the spacecraft and perform final checkouts as part of prelaunch preparations.

Europa Clipper joins the spacecraft’s two five-panel solar arrays that arrived at Kennedy in March. The arrays, each 46.5 feet (14.2 meters) long, will collect enough sunlight to power the spacecraft on its way to Jupiter’s moon. Technicians will install the arrays on the spacecraft before launch.

The spacecraft was designed to withstand the pummeling of radiation from Jupiter and gather the measurements needed to investigate Europa’s surface, interior, and space environment.

mapa tours europa 2023

NASA’s largest planetary mission spacecraft, Europa Clipper, arrives at the Payload Hazardous Servicing Facility at the agency’s Kennedy Space Center in Florida on May 23.

Europa Clipper has nine dedicated science instruments , including cameras, spectrometers, a magnetometer, and an ice-penetrating radar. These instruments will study Europa’s icy shell, the ocean beneath, and the composition of the gases in the moon’s atmosphere and surface geology, and provide insights into the moon’s potential habitability. The spacecraft also will carry a thermal instrument to pinpoint locations of warmer ice and any possible eruptions of water vapor. Strong evidence shows the ocean beneath Europa’s crust is twice the volume of all the Earth’s oceans combined.

The Europa Clipper mission demonstrates NASA’s commitment to exploring our solar system and searching for habitability beyond Earth. The data will contribute to our understanding of the Jovian system and will help pave the way for potential future missions to study Europa and other potentially habitable worlds.

Europa Clipper is expected to reach the Jupiter system in April 2030, and it will accomplish a few milestones along the way, including a Mars flyby in February 2025 that will help propel the spacecraft toward Jupiter’s moon through a Mars-Earth gravity assist trajectory.

“After two years of painstaking work on the spacecraft here at JPL, with the help of our partners, it was bittersweet to see the spacecraft encased in its shipping container and on its way to Florida,” said Jordan Evans, Europa Clipper project manager at JPL. “But we already have Europa Clipper engineers and technicians at Kennedy who are welcoming this precious cargo and are set to accomplish the final assembly and testing so that we’re ready for launch.”

NASA and SpaceX are targeting launch aboard a Falcon Heavy rocket from Launch Complex 39A at Kennedy later this year. The launch period opens on Oct. 10. After testing and final preparations are complete, the spacecraft will be encapsulated in a protective payload fairing and moved to the SpaceX hangar at the launch complex.

Need Some Space?

Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. The main spacecraft body was designed by APL in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, executes program management of the Europa Clipper mission.

NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft.

News Media Contact

Gretchen McCartney

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-6215

[email protected]

Karen Fox / Alana Johnson

NASA Headquarters, Washington

202-385-1287 / 202-358-1501

[email protected] / [email protected]

En este portal utilizamos datos de navegación / cookies propias y de terceros para gestionar el portal, elaborar información estadística, optimizar la funcionalidad del sitio y mostrar publicidad relacionada con sus preferencias a través del análisis de la navegación. Si continúa navegando, usted estará aceptando esta utilización. Puede conocer cómo deshabilitarlas u obtener más información aquí

Lorem ipsum

  • Configurar mis datos
  • Activar acceso digital
  • Suscribirme
  • Ver versión impresa
  • Artículos guardados
  • Club vivamos El Tiempo
  • El tiempo play
  • Juegos mentales
  • Preguntas frecuentes
  • Cerrar sesión
  • Mi suscripción

Finanzas Personales

  • Sector Financiero

¡Hola !, Tu correo ha sido verficado. Ahora puedes elegir los Boletines que quieras recibir con la mejor información.

Bienvenido , has creado tu cuenta en EL TIEMPO. Conoce y personaliza tu perfil.

Hola Clementine el correo [email protected] no ha sido verificado. VERIFICAR CORREO

El correo electrónico de verificación se enviará a

[email protected]

Revisa tu bandeja de entrada y si no, en tu carpeta de correo no deseado.

Ya tienes una cuenta vinculada a EL TIEMPO, por favor inicia sesión con ella y no te pierdas de todos los beneficios que tenemos para tí.

¿Qué sucede con los aportes de la pensión cuando el cotizante fallece? Le contamos si puede reclamar

Lo que pasa con la pensión tras fallecimiento.

Lo que pasa con la pensión tras fallecimiento.

Foto: iStock

La reforma pensional de 2023 permite heredar la pensión en varios casos. Entérese si esto podría aplicar para usted. 

mapa tours europa 2023

La pérdida de un ser querido es causante de dolor y reflexión. En medio de este proceso de duelo, es importante conocer los derechos que asisten a los allegados del fallecido. Específicamente la posibilidad de heredar la pensión del pensionado, algo que es factible bajo la reforma pensional de 2023. Uno de los puntos que se mantuvo en el planteamiento de la reforma pensional del gobierno de Petro fue la pensión de supervivencia. Esta y otros casos permiten a ciertas personas acceder a la herencia de la pensión. Dicha medida busca brindar un alivio económico y mantener la estabilidad de quienes dependían de esos ingresos.

Temas Relacionados

Sectores MAYO 22 DE 2024

Reforma pensional: Cámara de Representantes avaló, por mayoría, umbral de 2,3 salarios mínimos

mapa tours europa 2023

Finanzas Personales MAYO 8 DE 2024

Esto le descuentan por salud y pensión según su salario si es empleado, independiente o pensionado

Fotomontaje a partir de imágenes de iStock.

Finanzas Personales MAYO 7 DE 2024

¿Cuáles son los pensionados que deben presentar la declaración de renta ante la Dian en este 2024? Tome nota

Imagen de referencia.

Pilas, ministra de Trabajo anuncia medida para revivir la mesada 14 de los pensionados en Colombia

Pensión.

¿Quiénes son los beneficiarios?

Este día es obligatorio.

La familia directa suele ser la beneficiaria de estas pensiones.

  • En forma vitalicia: cónyuge o pareja permanente (mientras tenga 30 o más años de edad a la fecha del fallecimiento del causante).
  • En forma temporal (máx. 20 años): cónyuge o pareja permanente (mientras tenga menos de 30 años de edad a la fecha del fallecimiento del causante y no hayan procreado hijos(as).
  • Hijos(as) menores de 18 años.
  • Hijos(as) mayores de 18 años y hasta los 25 años, sólo si estudian y si dependían económicamente del causante. 
  • A falta de cónyuge, pareja permanente, padres e hijos(as) con derecho, serán beneficiarios hermanos(as) inválidos si dependían económicamente del causante

Requisitos para pensionarse, según Colpensiones

Colombia, entre los peores países para pensionarse, según estudio.

El tiempo de las mujeres será reducido desde el 2025.

Los cambios de la Reforma Pensional

Lea más noticias:.

icono el tiempo

DESCARGA LA APP EL TIEMPO

Personaliza, descubre e informate.

Empodera tu conocimiento

Reducción de jornada laboral quitaría un día de descanso remunerado que hoy se disfruta, el billete de un dólar que costaría $ 600 millones de pesos, lotería de boyacá y cauca: estos son los resultados y ganadores del sorteo del 25 de mayo, las señales que indican que la situación fiscal de colombia se está deteriorando cada vez más, abren vacantes para trabajar en el banco de la república: estos son los requisitos para aplicar en distintas ciudades, más noticias.

Descubra si su signo del zodiaco es uno de los bendecidos con la suerte en los juegos de azar.

Finanzas Personales 12:00 A.M.

Los sorteos se llevan a cabo los miércoles y sábado.

Baloto y Revancha: estos son los resultados y ganadores del sorteo del 25 de mayo

Las salarios de los altos cargos dependen de la facturación de la empresa.

Finanzas Personales MAYO 25 DE 2024

Llega Hearth Summit Bogotá, el evento que promueve el bienestar y la sostenibilidad en las empresas colombianas

Foto de referencia.

El Banco de la República explica cómo diferenciar los billetes falsos: este es el paso a paso

Son varios los billetes de US$1 buscados por los coleccionistas.

Respuestas sobre la suspensión de asambleas y manual de convivencia

Lotería de Medellín, Santander y Risaralda

Lotería de Medellín, Santander y Risaralda: resultados y números ganadores del sorteo del viernes 24 de mayo

Nuestro mundo.

Panorámica de Cali.

Cali 09:00 A.M.

Estas son las implicaciones que trae la nulidad del POT de 2014 para los ciudadanos de Cali

El vacío jurídico impacta en recaudos, licencias urbanas, viviendas y protección de áreas rurales con vocación ambiental. 

La droga fue encontrada en una vivienda que sería utilizada como una caleta del Clan del Golfo en el barrio Siete de Abril.

Barranquilla 08:18 A.M.

Barranquilla : decomisan más de una tonelada de estupefacientes que tenía como destino Europa

La droga estaba almacenada en una casa y está avaluada en 96 mil millones de pesos.

Otras Ciudades 06:32 A.M.

Temblor hoy en Colombia: epicentro y magnitud del sismo de este domingo

Temblor

Otras Ciudades 07:41 A.M.

Guerra en Cauca: en las escuelas los niños aprenden qué hacer cuando hay ataques con explosivos

Colegio y advertencias en Corinto, Cauca

Otras Ciudades MAYO 25 DE 2024

Volcán Puracé aumentó su actividad sísmica, pero se mantiene alerta naranja

Volcán Puracé

Internacional 12:00 A.M.

La historia detrás del falso 'monje shaolín' que asesinó a una colombiana en España

El criminal se ocultaba bajo la fachada de guía espiritual y decía que 'matar era inalcanzable para la mente'.

a

Internacional MAYO 24 DE 2024

La trágica historia de una mujer recién casada que murió de repente en plena luna de miel

Lo que parecía iba a ser un comienzo de una vida feliz, terminó en tragedia.

Internacional MAYO 23 DE 2024

Tragedia en Singapore Airlines: Testigo relata muerte de uno de los pasajeros del avión

Las imágenes del avión muestran los destrozos provocados por la turbulencia.

Florida: la nueva ley que metería a la cárcel a alguien incluso solo por 'rumores'

El motín ocurrió en la Unidad Penal Número 2 de Sierra Chica, en Argentina.

Internacional MAYO 21 DE 2024

Con la acústica submarina podrían encontrar el vuelo MH370 de Malaysia Airlines: 10 años de su desaparición

La aerolínea estadounidense American Airlines argumenta que no va a Venezuela por aumento de crisis humanitaria y deterioro de la seguridad.

Bogotá 08:00 A.M.

¡Pilas! Habrá cambios en los turnos de racionamiento entre el 26 de mayo y el 3 de junio: así se modificaron las zonas 3 y 9

Natasha Avendaño, gerente del Acueducto de Bogotá, anunció los cambios en el racionamiento.

Así quedo la fábrica de pólvora El Vaquero Un muerto y más de 30 heridos por la explosión . Fábrica localizada en Soacha y que  distribuía todo tipo de artículos de pirotecnia. La explosión dejó vidrios toso en los edificios y casa aledañas. Los trabajadores de la compañía se hicieron presentes a las afueras de la fábrica . Bogota 23 de mayo del 2024. FOTO MAURICIO MORENO CEET EL TIEMPO @mauriciomorenofoto

Bogotá 12:00 A.M.

El problema de tener una fábrica de pólvora como vecina en Soacha

Habitantes de la zona están preocupados por el riesgo que ya representa la empresa luego de la explosión. Autoridades dicen que cumplen la reglamentaciones, ¿qué harán?

Los caminos que tiene Bogotá para reactivar su economía y retomar el crecimiento

Cientos de personas asistieron a la Feria del Empleo en 2023 en el parque de Lourdes de la capital.

Bogotá MAYO 25 DE 2024

Racionamiento de agua en Bogotá: estos son los barrios que tendrán cortes este domingo 26 de mayo

Bogotá tendrá racionamiento de agua.

Expertos proponen frenar la regulación de las tarifas de parqueaderos en Bogotá, ¿por qué?

Se recuperaron tres bahías de parqueaderos ubicadas en la calle 100 y en la carrera 19, en inmediaciones a la parroquia Cristo Rey.

Medellín MAYO 25 DE 2024

¿Sin plan en Medellín? estos son los eventos más destacados del fin de semana en la ciudad

Expotatuajes y la Feria Popular Días del Libro tienen lugar en la capital antioqueña.

sujeto agredió a funcionarias del Metro de Medellín

Medellín 12:00 A.M.

Hombre ingresó a taquilla del metro de Medellín y lesionó a dos mujeres; así se vivieron los tensos momentos

El sujeto tuvo que ser sacado de la estación por personal de seguridad y la policía.

Líder sindical del Politécnico Jaime Isaza Cadavid amenazó con un cuchillo a estudiantes

El hombre fue grabado en video

Tras enfrentamientos en la vereda Plaza Nueva, de Remedios (Antioquia), habría aumentado a 13 personas la cifra de muertos

Llegó pie de fuerza a la vereda Plaza Nueva

La ‘app’ creada por paisas que facilita el acopio de escombros

Aplicación creada por paisas para recoger escombros.

Cali 12:00 A.M.

Indignación en el Valle: un padre estuvo abusando de su hija desde los 9 años, no la dejaba tener novio y convivían juntos

En otro caso de incesto en Cali, un hombre que cantaba en misas violó repetidas veces a su hija cuando tenía 12 años. Ambos hombres fueron condenados.

Cali MAYO 25 DE 2024

Este es el video de empresario asesinado en camioneta de alta gama en estación de servicio de Buga

Este es el momento en el que el sicario asesina al empresario.

Estas son las medidas en Jamundí con controles del Ejército y la Policía, tras escalada terrorista de disidentes

Ejército y Policía adelantan controles en el casco urbano de Jamundí.

Golpe a la delincuencia en Palmira: capturan a alias 'Jhon Alex', el terror de la comuna 3

Alias 'Jhon Alex' fue puesto a disposición de la autoridad competente

Barranquilla MAYO 25 DE 2024

En agosto iniciarían los trabajos de la doble calzada Barranquilla-Ciénaga: esto es lo que se sabe

La Concesión Sierra Mar es la encargada del contrato, cuyo  costo es de aproximadamente $2.5 billones.

Barranquilla: Comando General de las Fuerzas Militares aclara polémica sobre retiro del Gaula Militar

Gaula Militar.

Estudiantes fantasmas en Soledad: detalles de la otra investigación por presuntas irregularidades en becas escolares

Alcira Sandoval, alcaldesa del municipio de Soledad, en el área metropolitana de Barranquilla.

Usuarios en el Caribe deberán esperar: rebaja en tarifas de energía 'se demora'

Siguen las quejas por altas tarifas de energía contra Air-e

El movimiento telúrico ocurrió hacia las 5:24 a. m. de este domingo 26 de mayo.

Hostigamientos no se veían tan fuertes desde hace 10 años. EL TIEMPO viajó al corazón del conflicto. Las mujeres y niños, los más afectados. El reclutamiento volvió.

Así capturaron a 10 hombres señalados de extorsiones y activación de explosivos en Neiva

Estos fueron los 10 capturados.

Valledupar celebra este domingo el cumpleaños 67 de Diomedes Díaz con diversos actos

Diomedes Díaz

Latinoamérica MAYO 25 DE 2024

Nayib Bukele despliega miles de soldados y policías contra pandilleros en El Salvador

Bukele dijo en X que fueron desplegados 2.000 soldados y 1.000 policías, y compartió imágenes y video.

Javier Milei, presidente de Argentina.

Javier Milei anunció que tras la sanción de la Ley Bases avanzará en una reducción 'significativa de impuestos'

Milei tendió la mano a los gobernadores provinciales, con motivo del discurso ofrecido durante el Día de la Patria.

Avanza en Haití la llegada de fuerzas de seguridad de Kenia mientras bandas entran en 'pánico'

Personas caminan frente al Palacio Nacional este sábado, en Puerto Príncipe (Haití).

Ecuador agiliza el ingreso de turistas internacionales por las fronteras terrestres

Ecuador agiliza el ingreso de turistas internacionales por las fronteras terrestres

Latinoamérica MAYO 24 DE 2024

Video | Murió ladrón cuando intentaba huir con el botín: pierna se le incrustó en la púa de una reja

Robo en Perú.

Venezuela MAYO 23 DE 2024

¿Qué pasó con los mercenarios de la Operación Gedeón que buscaban derrocar a Nicolás Maduro y qué papel jugó Colombia?

Cuatro años después del fallido plan, los sobrevivientes fueron condenados con penas que alcanzan los 30 años de cárcel.

El presidente del gobierno español, Pedro Sánchez, y su esposa Begoña Gómez.

Begoña Gómez se vio con un ministro de Maduro, mientras Sánchez plantaba a Guaidó, dice medio español

Gómez acudió en calidad de directora del IE Africa Center.

'En Venezuela no hay prensa libre', afirma director de El Nacional, al denunciar bloqueo

El presidente de Venezuela, Nicolás Maduro.

Venezuela MAYO 22 DE 2024

Hasta 30 años de cárcel para condenados por la 'Operación Gedeón', una incursión armada contra Nicolás Maduro

Tarek William Saab, Fiscal General de Venezuela.

¿Por qué las criptomonedas están dejando sin energía por más de ocho horas a los venezolanos?

Las casas y apartamentos vacíos en Venezuela en ocasiones son invadidos. Por eso pocos están dispuestos a arrendar y no venden por la desvalorización.

EEUU 09:00 A.M.

4 rutas de avión de Nueva York, entre las 10 con más turbulencias en EE. UU.

Un listado detalló cuáles son las más intensas en ese sentido. 

Ser lavaplatos es uno de los empleos más comunes entre los migrantes.

EEUU 08:45 A.M.

¿Cuánto gana una persona que lava platos en Estados Unidos al mes?

Los sueldos dependen del lugar en donde se trabaje, Washington ofrece los más altos. 

EEUU 08:30 A.M.

¿Sabía que la green card antes no era verde? Tenía un color diferente

La green card permite vivir y trabajar en Estados Unidos.

EEUU 08:15 A.M.

Biden vs. Trump: ¿quién va ganando en California, según las encuestas?

Crece número de personas que prefiere a un candidato distinto a Biden o Trump

EEUU 08:00 A.M.

California: Newsom firma ley sobre el aborto que 'beneficia' a otros estados

Las pruebas de embarazo pueden ser de sangre o de orina.

Europa 04:20 A.M.

Francia debate la legalización de la eutanasia en medio de una gran división

Los diputados permitir la eutanasia a pacientes con enfermedades "en fase avanzada o terminal".

Evacuados de la región de Járkov.

Europa MAYO 25 DE 2024

El G7 de Economía anuncia avances para el uso de los activos rusos para ayudar a Ucrania

El G7 congeló unos 300.000 millones de dólares en activos rusos, la mayoría están en Europa.

Al menos 12 niños resultaron heridos por la caída de un techo de una escuela a causa de los vientos en Rusia

Lugar de los hechos.

Europa MAYO 24 DE 2024

Estos son los seis países de Europa que levantarán un 'muro de drones' en la frontera con Rusia: ¿qué mensaje le envían a Putin?

Ministros de Defensa europeos se reúnen en Lituania para discutir las amenazas en el Báltico.

Kate Middleton: el nuevo retrato de la princesa de Gales que desata polémica y genera debate en redes sociales

El retrato de la princesa de Gales fue hecho por la artista británica Hannah Huzor.

África MAYO 25 DE 2024

República Centroafricana se convierte en el primer país del mundo que recibe nueva vacuna antimalaria

Unicef entregó más de 43.000 dosis por vía aérea en Bangui.

Vital Kamerhe

África MAYO 19 DE 2024

Hombres uniformados asaltan la residencia del vice primer ministro de la RD del Congo

Los atacantes, vestidos con uniforme militar, hablaban en inglés y lingala.

África MAYO 17 DE 2024

Revelan nuevos detalles del hombre que estuvo secuestrado por su vecino durante 26 años: así descubrieron su paradero

Estuvo secuestrado desde su adolescencia.

África MAYO 16 DE 2024

Encuentran en el establo de un vecino a un hombre desaparecido desde hacía 26 años

.

África ABRIL 19 DE 2024

Exclusivo: entrevista con activista LGBTIQ+ elegido por TIME como una de las personas más influyentes de 2024

Frank Mugisha

Medio Oriente 12:00 A.M.

Israel enfrenta uno de sus mayores reveses diplomáticos con una Europa que empieza a actuar dividida, ¿qué está en juego?

El reconocimiento del Estado palestino por España, Noruega e Irlanda se sumó a presión de la Corte Penal Internacional y la Corte Internacional de Justicia para que Benjamín Netanyahu detenga la guerra en Gaza. Divisiones empiezan a aflorar.

Una mujer palestina que sostiene a sus hijos reacciona frente a un hospital al que se trasladan las víctimas tras el bombardeo israelí en Bureij, en el centro de la Franja de Gaza.

Medio Oriente MAYO 25 DE 2024

Inteligencia Artificial: los riesgos de que un algoritmo decida quién vive y quién muere en una guerra

Las revelaciones sobre su uso en Gaza y el elevado número de muertos civiles plantean serios interrogantes éticos y jurídicos. Análisis.

Israel bombardea Rafah pese a fallo de la CIJ y anuncia 'intención' de reanudar negociaciones con Hamás

Ataques de Israel en Rafah

Israel, EE.UU. y Catar acuerdan retomar las conversaciones para una tregua con Hamás

Palestinos buscan sobrevivientes tras ataques de Israel.

Israel ignora la orden de la Corte Internacional de Justicia de detener ofensiva en Rafah y mantiene ofensiva

Un palestino y sus hijos sentados en una habitación destruida tras un ataque aéreo israelí contra un edificio residencial en Rafah.

Medio Oriente MAYO 24 DE 2024

¿Qué alcance real tiene en terreno el fallo de la CIJ que le exige a Israel frenar su ofensiva militar en Rafah?

El ejército israelí emitió el lunes una orden de evacuación para la zona este de Rafah.

Israel replica el fallo de la CIJ: 'la ofensiva en Rafah no supone la destrucción de la población civil palestina'

Un niño palestino se encuentra entre los escombros de un edificio gravemente dañado por un ataque aéreo israelí en Rafah.

La Corte Penal Internacional puede ser otra víctima del 7 de octubre

Países como Bahamas, Cuba, Chile, Estados Unidos, Haití, Jamaica, Santa Lucía, Granada, Guatemala, Nicaragua, El Salvador y Surinam, firmaron el acuerdo en primera instancia, pero no ratificaron su adhesión al tratado final.

Israel prohíbe a la embajada y consulados de España prestar servicios a los palestinos

Las banderas de Israel y España ondean fuera del edificio que alberga las oficinas de la Embajada de España en la ciudad de Tel Aviv.

La CIJ, el máximo tribunal de la ONU, le ordena a Israel detener las operaciones militares en Rafah, en Gaza

Desplazados internos palestinos salen con sus pertenencias tras una orden de evacuación emitida por el ejército israelí, en Rafah.

'Es nuestro deber nacional': Netanyahu y Herzog prometen trabajar en el regreso de rehenes

Netanyahu y Herzog.

'La CPI debe nombrar a un juez para que estudie el caso': exmilitar de Israel habla sobre orden de detención contra Netanyahu

El primer ministro israelí, Benjamín Netanyahu.

Medio Oriente MAYO 23 DE 2024

Israel dice que mató a un supuesto comandante de Hamás en un túnel del norte de Gaza: esta es la identidad del combatiente

Operación militar israelí en la franja de Gaza.

Presidente de Irán Ebrahim Raisi fue enterrado en su ciudad natal en medio de multitudinaria ceremonia

Féretro del difunto presidente iraní Ebrahim Raisi durante un cortejo fúnebre.

'Graves consecuencias': Israel advierte a España, Irlanda y Noruega por su reconocimiento al Estado palestino

La mayor parte del mundo ya reconoce a Palestina como Estado. Ahora España Irlanda y Noruega se suman a la creciente lista.

La CIJ se pronunciará este viernes sobre pedido sudafricano de medidas cautelares contra Israel por la ofensiva en Rafah

Palestinos se dirige a zonas más seguras en Rafah, en el sur de la Franja de Gaza.

Gabinete de guerra de Israel da luz verde a la reanudación de las negociaciones para liberar a los rehenes en Gaza: ¿qué sigue?

Primer ministro de Israel, Benjamín Netanyahu, se reúne con el gabinete de guerra israelí tras ataque de Irán con drones.

¿Cuáles son las implicaciones de la decisión de España, Irlanda y Noruega de reconocer a Palestina como Estado?

El presidente del gobierno español, Pedro Sánchez; el primer ministro israelí, Benjamín Netanyahu; y el presidente de la Autoridad Nacional Palestina, Mahmud Abbas.

Medio Oriente MAYO 22 DE 2024

En imágenes: miles de personas asisten en Teherán al funeral del presidente de Irán Ebrahim Raisi

Iraníes participan en una ceremonia funeraria del difunto presidente Ebrahim Raisi en Teherán, Irán.

Hamás celebra decisión de España, Noruega e Irlanda de reconocer al Estado palestino: 'Es un importante paso'

Protestas a favor de los palestinos. Para Hamás, que gobierna la Franja de Gaza, los ataques son una venganza por lo que denominan los “crímenes de la ocupación”.

Asia 04:39 A.M.

Orden de arresto para jefes de un hospital en India tras incendio que mató a varios bebés

Bomberos de Delhi informaron que doce recién nacidos fueron rescatados del centro médico, aunque siete murieron.

El Presidente de Corea del Sur, Yoon Suk Yeol (R), saluda al Primer Ministro chino Li Qiang durante una reunión en la Oficina Presidencial en Seúl, Corea del Sur,

Asia 04:08 A.M.

Seúl y Pekín abordan proyectos económicos conjuntos y cooperación para estabilidad global

El encuentro no se producía desde 2019, pues quedó suspendido por el congelamiento de la actividad diplomática por la pandemia.

Asia MAYO 24 DE 2024

China culminó sus maniobras militares en torno a Taiwán y lanzó una advertencia a Estados Unidos

Un helicóptero militar chino sobrevuela la isla de Pingtan, el punto de China más cercano a la isla principal de Taiwán.

Asia MAYO 23 DE 2024

¿Por qué los ejercicios militares de China son considerados una 'simulación' sobre cómo invadir y bloquear a Taiwán?

Un caza Mirage 2000 de la Fuerza Aérea de Taiwán desplegado para responder a los ejercicios militares de China.

Taiwán detecta nuevos cruces de guardacostas con buques militares de China

Avión de combate chino desplegado en los ejercicios militares de Pekín.

Asia MAYO 22 DE 2024

China inicia ejercicios militares cerca a Taiwán y dice que son un 'fuerte castigo': esto es lo que se sabe

Veinte pasajeros del vuelo de singapore airlines afectado por 'fuertes turbulencias' están en cuidados intensivos.

Turbulencia en avión de Londres a Singapur.

¿Sombras en la luna de miel entre Xi Jinping y Vladimir Putin? Los puntos que podrían afectar la relación entre China y Rusia

El presidente de Rusia, Vladimir Putin, y el presidente de China, Xi Jinping.

Asia MAYO 21 DE 2024

Los videos de la turbulencia en vuelo de Londres a Singapur que dejó un muerto y varios heridos

Medio Oriente MAYO 21 DE 2024

Irán: arrancan ceremonias fúnebres para despedir al fallecido presidente Ebrahim Raisi

Camión transporta los féretros del presidente Ebrahim Raisi y los otros siete fallecidos en el accidente aéreo.

Reportan un muerto y varios heridos por 'fuertes turbulencias' en un vuelo de Londres a Singapur

Vuelo

Asia MAYO 20 DE 2024

Un hombre murió y dos policías resultaron heridos tras el ataque de un oso: esto se sabe

Cada especie es reconocible por su tamaño, forma y características distintas.

Un sismo de magnitud 5,2 sacude la región occidental china de Xinjiang sin causar daños

Terremoto en China

Avión con 468 pasajeros tuvo que aterrizar de emergencia en Indonesia tras incendio en uno de los motores

Así se vio en tierra el aterrizaje de emergencia del avión.

Asia MAYO 19 DE 2024

Elon Musk lanza en Bali su red Starlink para ampliar el acceso a internet en Indonesia

Esta es una ilustración de cómo se va a ver Starlink, la red se satélites que está instalando SpaceX en el espacio.

Alerta en Indonesia| evacúan siete localidades tras nuevas erupciones del volcán Ibu

Volcán Ibu

India: Inquietantes elecciones en la ‘mayor democracia del mundo’

Primer ministro de India, Narendra Modi.

Asia MAYO 18 DE 2024

Israel mata a un comandante palestino en Yenín en una operación con un avión de combate

Israel mata a un comandante palestino en Yenín en una operación con un avión de combate

Asia MAYO 17 DE 2024

Cuatro muertos, tres de ellos turistas españoles, en un tiroteo en Afganistán: esto es lo que se sabe

mapa tours europa 2023

Insólita pelea en el Parlamento de Taiwán: un legislador se robó un proyecto de ley y huyó en una agitada sesión

Pelea en Parlamento de Taiwán.

Más Regiones MAYO 25 DE 2024

Al menos 300 personas enterradas por deslizamiento de tierra en Papúa Nueva Guinea, según medios locales

Una mujer que reside en el lugar de los hechos aseguró que ‘el pueblo entero ha desaparecido’.

mapa tours europa 2023

Más Regiones 12:00 A.M.

Una vuelta al mundo: ¿un ‘mes anti-Javier Milei’? La propuesta que ronda en Alemania ante visita del presidente de Argentina

Le contamos cuáles son las noticias del mundo más importantes de la semana.

Más Regiones MAYO 24 DE 2024

La polémica de Scarlett Johansson con creadores de ChatGPT por los riesgos de que la IA se parezca cada vez más a los humanos

ChatGPT y Scarlett Johannson

Por qué preocupa que Rusia esté usando en Ucrania misiles fabricados en Corea del Norte

El gobierno de Corea del Sur observó recientemente que Corea del Norte había enviado 6.700 contenedores de municiones a Rusia

El mapa que muestra los países del mundo que reconocen al Estado palestino y los que no

El 9 de mayo, más del 80% de los estados miembro de la Asamblea General de la ONU apoyaron que se incluya al Estado palestino en esa organización.

Más Regiones MAYO 23 DE 2024

Estos son los vuelos de corta y larga distancia más turbulentos del mundo: un trayecto en Sudamérica ocupa el primer lugar

Otro pasajero relató el hecho.

Más Regiones MAYO 22 DE 2024

Qué son las turbulencias de aire claro que dejaron un muerto y decenas de heridos en el vuelo de Singapore Airlines

Más Regiones MAYO 21 DE 2024

'Mi madre, mi padre y mi hermana murieron por recibir sangre infectada con VIH': el mayor escándalo de salud pública en Reino Unido

mapa tours europa 2023

Más Regiones MAYO 19 DE 2024

Una vuelta al mundo: ‘Conduzca como una mujer’ para salvar vidas

Calles de Francia, el país que más recibe turistas al año, están sin visitantes.

Más Regiones MAYO 18 DE 2024

Cómo el gobierno saudita 'autorizó a matar' para poder construir su ciudad futurista de Neom

The Line es una parte central del megaproyecto saudita Neom.

Cómo la ofensiva de Israel en Rafah desafía su acuerdo de paz de más de 40 años con Egipto

La llegada de los tanques israelíes al paso de Rafah, que conecta la Franja de Gaza con Egipto ha supuesto un punto de inflexión para El Cairo.

Más Regiones MAYO 17 DE 2024

¿Qué tan probable es una alianza militar entre China, Rusia e Irán que desafíe a Occidente?

Xi Jinping y Vladimir Putin.

Más Regiones MAYO 15 DE 2024

El hombre que se enfrentó a la poderosa industria del carbón para salvar un bosque... y ganó

El ambientalista Alok Shukla ha dedicado más de una década a salvar árboles en el centro de India.

Novedades Tecnología MAYO 15 DE 2024

La seis nuevas funciones de la última versión de ChatGPT: es capaz de coquetear y detectar emociones

mapa tours europa 2023

Más Regiones MAYO 12 DE 2024

'El caso Asunta': la niña china asesinada por sus padres adoptivos que estremeció a España

Asunta Basterra murió el 21 de septiembre de 2013. Tenía 12 años.

Una vuelta al mundo: esta es la ciudad del mundo con el mayor número de millonarios

La multa aplicará a los vehículos que excedan el límite de ruido establecido por ley

Más Regiones MAYO 10 DE 2024

Así es el laberinto de cuevas de lava sobre el que está construida la ciudad más grande de Nueva Zelanda

Las cuevas pueden superar los 70.000 años de antigüedad.

Más Regiones MAYO 8 DE 2024

Impactantes imágenes: aterrizaje de emergencia en Estambul alerta por números de incidentes en aviones Boeing

Accidentes de Boeing esta semana

Esta es la ciudad de EE. UU. que tiene más habitantes árabes que estadounidenses

Dearborn, en Michigan, alberga la mezquita más grande de América del Norte.

¿Cuáles son las razones para que AstraZeneca retire del mercado su vacuna contra el covid-19?

AstraZeneca señaló que tomó la decisión por razones comerciales.

Encuentra acá todos los signos del zodiaco. Tenemos para ti consejos de amor, finanzas y muchas cosas más.

Pon a prueba tus conocimientos con el crucigrama de EL TIEMPO

Gente 08:52 A.M.

Video: hombre aseguró ser fiel seguidor de Omar Geles y le cambió toda la letra a 'Los caminos de la vida'

Fanático de Omar Geles

Automovilismo 08:51 A.M.

Video: escalofriante accidente en el arranque del Gran Premio de Mónaco de Fórmula 1

Fórmula 1

Mis Portales

Alisten la chequera: esto recibirá Junior por haber pasado de ronda

Alisten la chequera: esto recibirá Junior por haber pasado de ronda

Republicanos en EE. UU. se oponen a freno de suministro de armas para Israel

Republicanos en EE. UU. se oponen a freno de suministro de armas para Israel

Planta de vacunas en el país se inauguró ayer en Rionegro (Antioquia)

Planta de vacunas en el país se inauguró ayer en Rionegro (Antioquia)

Fueron capturadas 31 personas por tráfico de migrantes

Fueron capturadas 31 personas por tráfico de migrantes

mapa tours europa 2023

El Villarreal domó al 'red devil': 3 años de la Europa League de Gdansk

El equipo de unai emery se impuso ante el manchester united en unos penaltis eternos en polonia, david de gea erró el cobro definitivo y fue el gran señalado de la tanda.

Los jugadores del Villarreal celebrando el título (2021)

Los jugadores del Villarreal celebrando el título (2021) / 'X': @VillarrealCF

SPORT.es

Desde aquella gesta de David haciendo uso de su honda para matar a Goliat, innumerables son las crónicas que asemejan la epopeya bíblica con algún triunfo deportivo que se eleve a la categoría de gesta. Al Villarreal le pasó y lo contamos, en nuestra edición del 26 de mayo de 2021 , cuando venció al Manchester United en la final de la Europa League en el Arena Gdansk de Polonia.

La Atalanta rompe la lógica y corona la Europa League

La Atalanta rompe la lógica y corona la Europa League

El 'Submarino' decidió emplear la vía más épica para reinar en Europa. Tras firmar las tablas 1-1 en los 120' con los tantos de Cavani y Gerard Moreno, el encuentro se desencalló por la vía de los penaltis. Eternos, por lo demás, porque se patearon 21 sin fallo alguno.

DE GEA, EL SEÑALADO

El once al completo de Unai Emery chutó sin errar, y lo propio hacía el United de Ole Gunnar Solskjaer. Hasta que llegó David de Gea al cobro. Tras no haber parado ninguno en la tanda, tampoco fue capaz de meter el suyo , siendo detenido por Gerónimo Rulli y desatando la locura del cuadro 'groguet'.

El resultado fue un gran tesoro para un Villarreal que lo buscó a lo largo de todo el torneo continental. Lo refrendó con una gran final ante el encopetado rival inglés. Solskjaer, tras finalizar el partido, lamentó que su equipo "no apareció", siendo realmente engullido por una defensa comandada por Albiol, la medular conducida por Dani Parejo y la ofensiva a la guía de Gerard Moreno. Tres años se cumplen ya de aquella gesta por siempre recordada en Castellón. Los héroes de Gdansk.

  • Villarreal CF
  • Manchester United
  • Europa League

Noticia guardada en tu perfil

Ver noticias guardadas

  • Lo más leído
  • Buenas noticias para los hipotecados: La decisión que ha tomado el BCE con los tipos de interés
  • Notición para los jubilados: La medida del Gobierno que repercute en las carreras de cotización
  • El Sevilla mira adelante con 'Pimi' y Ansu Fati
  • Última hora: Comunicado de urgencia sobre el príncipe Guillermo y se disparan los rumores
  • Mbappé: 'Lo que me espera será fantástico
  • Jorge Rey anuncia cómo terminará el mes de mayo: 'Llegará...
  • La convocatoria del FC Barcelona para la última jornada de Liga
  • Josh Kerr volvió a 'cargarse' a Ingebrigtsen en la Diamond League

Amelie Mauresmo, directora de Roland Garros: "Nadal quiere mantener la puerta abierta a volver"

Amelie Mauresmo, directora de Roland Garros: "Nadal quiere mantener la puerta abierta a volver"

Alcaraz - Wolf, primera ronda de Roland Garros 2024, en directo y online | Alcaraz se apunta el primer set

Alcaraz - Wolf, primera ronda de Roland Garros 2024, en directo y online | Alcaraz se apunta el primer set

Coco Constans: “Salí llorando de mi primera clase de pilates”

Coco Constans: “Salí llorando de mi primera clase de pilates”

Bagnaia gana y se acerca al líder Martín en otra gran remontada de Márquez

Bagnaia gana y se acerca al líder Martín en otra gran remontada de Márquez

El regreso de Chygrynskyi

El regreso de Chygrynskyi

Bandera roja en Mónaco: ! El coche de Checo, destrozado ¡

Bandera roja en Mónaco: ! El coche de Checo, destrozado ¡

Richard M. Sherman, uno de los compositores más prolíficos de Disney, muere a los 95 años

Richard M. Sherman, uno de los compositores más prolíficos de Disney, muere a los 95 años

MotoGP hoy: resumen, resultado y tiempos de Jorge Martín y Marc Márquez en el GP de Catalunya

MotoGP hoy: resumen, resultado y tiempos de Jorge Martín y Marc Márquez en el GP de Catalunya

Highlights & Sehenswertes

Leider sind für diesen Kartenausschnitt keine Highlights vorhanden.

Erlebnisse in der Nähe

Familienwanderung in levoca, der beste rundgang durch levoca, romantische tour in levoca, reiseführer-themen.

mapa tours europa 2023

Tschechien und Slowakei: Kuren auf den Spuren von Kaiser Wilhelm und Sisi

Beliebte regionen und orte, gellértberg, kettenbrücke, heldenplatz.

Science Overview of the Europa Clipper Mission

  • Open access
  • Published: 23 May 2024
  • Volume 220 , article number  40 , ( 2024 )

Cite this article

You have full access to this open access article

mapa tours europa 2023

  • Robert T. Pappalardo   ORCID: orcid.org/0000-0003-2571-4627 1 ,
  • Bonnie J. Buratti 1 ,
  • Haje Korth 2 ,
  • David A. Senske 1 ,
  • Diana L. Blaney 1 ,
  • Donald D. Blankenship 3 ,
  • James L. Burch 4 ,
  • Philip R. Christensen 5 ,
  • Sascha Kempf 8 ,
  • Margaret G. Kivelson 9 , 10 ,
  • Erwan Mazarico 11 ,
  • Kurt D. Retherford 4 ,
  • Elizabeth P. Turtle 2 ,
  • Joseph H. Westlake 2 ,
  • Brian G. Paczkowski 1 ,
  • Trina L. Ray 1 ,
  • Jennifer Kampmeier 1 ,
  • Kate L. Craft 2 ,
  • Samuel M. Howell 1 ,
  • Rachel L. Klima 2 ,
  • Erin J. Leonard 1 ,
  • Alexandra Matiella Novak 2 ,
  • Cynthia B. Phillips 1 ,
  • Ingrid J. Daubar 1 ,
  • Jordana Blacksberg 1 ,
  • Shawn M. Brooks 1 ,
  • Mathieu N. Choukroun 1 ,
  • Corey J. Cochrane 1 ,
  • Serina Diniega 1 ,
  • Catherine M. Elder 1 ,
  • Carolyn M. Ernst 2 ,
  • Murthy S. Gudipati 1 ,
  • Adrienn Luspay-Kuti 2 ,
  • Sylvain Piqueux 1 ,
  • Abigail M. Rymer 2 ,
  • James H. Roberts 2 ,
  • Gregor Steinbrügge 1 ,
  • Morgan L. Cable 1 ,
  • Jennifer E. C. Scully 1 ,
  • Julie C. Castillo-Rogez 1 ,
  • Hamish C. F. C. Hay 1 , 6 ,
  • Divya M. Persaud 1 , 7 ,
  • Christopher R. Glein 4 ,
  • William B. McKinnon 12 ,
  • Jeffrey M. Moore 13 ,
  • Carol A. Raymond 1 ,
  • Dustin M. Schroeder 14 ,
  • Steven D. Vance 1 ,
  • Danielle Y. Wyrick 4 ,
  • Mikhail Y. Zolotov 5 ,
  • Kevin P. Hand 1 ,
  • Francis Nimmo 15 ,
  • Melissa A. McGrath 16 ,
  • John R. Spencer 17 ,
  • Jonathan I. Lunine 18 ,
  • Carol S. Paty 19 ,
  • Jason M. Soderblom 20 ,
  • Geoffrey C. Collins 21 ,
  • Britney E. Schmidt 18 ,
  • Julie A. Rathbun 18 , 22 ,
  • Everett L. Shock 5 ,
  • Tracy C. Becker 4 ,
  • Alexander G. Hayes 18 ,
  • Louise M. Prockter 2 ,
  • Benjamin P. Weiss 20 ,
  • Charles A. Hibbitts 2 ,
  • Alina Moussessian 1 ,
  • Timothy G. Brockwell 4 ,
  • Hsiang-Wen Hsu 8 ,
  • Xianzhe Jia 9 ,
  • G. Randall Gladstone 4 ,
  • Alfred S. McEwen 23 ,
  • G. Wesley Patterson 2 ,
  • Ralph L. McNutt Jr. 2 ,
  • Jordan P. Evans 1 ,
  • Timothy W. Larson 1 ,
  • L. Alberto Cangahuala 1 ,
  • Glen G. Havens 1 ,
  • Brent B. Buffington 1 ,
  • Ben Bradley 1 ,
  • Stefano Campagnola 1 ,
  • Sean H. Hardman 1 ,
  • Jeffrey M. Srinivasan 1 ,
  • Kendra L. Short 1 ,
  • Thomas C. Jedrey 1 ,
  • Joshua A. St. Vaughn 1 ,
  • Kevin P. Clark 1 ,
  • Janet Vertesi 24 &
  • Curt Niebur 25  

94 Accesses

49 Altmetric

Explore all metrics

The goal of NASA’s Europa Clipper mission is to assess the habitability of Jupiter’s moon Europa. After entering Jupiter orbit in 2030, the flight system will collect science data while flying past Europa 49 times at typical closest approach distances of 25–100 km. The mission’s objectives are to investigate Europa’s interior (ice shell and ocean), composition, and geology; the mission will also search for and characterize any current activity including possible plumes. The science objectives will be accomplished with a payload consisting of remote sensing and in-situ instruments. Remote sensing investigations cover the ultraviolet, visible, near infrared, and thermal infrared wavelength ranges of the electromagnetic spectrum, as well as an ice-penetrating radar. In-situ investigations measure the magnetic field, dust grains, neutral gas, and plasma surrounding Europa. Gravity science will be achieved using the telecommunication system, and a radiation monitoring engineering subsystem will provide complementary science data. The flight system is designed to enable all science instruments to operate and gather data simultaneously. Mission planning and operations are guided by scientific requirements and observation strategies, while appropriate updates to the plan will be made tactically as the instruments and Europa are characterized and discoveries emerge. Following collection and validation, all science data will be archived in NASA’s Planetary Data System. Communication, data sharing, and publication policies promote visibility, collaboration, and mutual interdependence across the full Europa Clipper science team, to best achieve the interdisciplinary science necessary to understand Europa.

Similar content being viewed by others

mapa tours europa 2023

Jupiter Science Enabled by ESA’s Jupiter Icy Moons Explorer

mapa tours europa 2023

The Europa Clipper Gravity and Radio Science Investigation

mapa tours europa 2023

The Juno Mission

Avoid common mistakes on your manuscript.

1 Introduction: The Scientific Imperative for Europa Exploration

Jupiter’s moon Europa may have conditions suitable for life as we know it. Evidence from magnetic induction and geology points to the existence of a global subsurface ocean today (McKinnon et al. 2009 ), and it is plausible that Europa’s ocean could contain the appropriate chemical building blocks and have chemical sources of energy to support life (Vance et al. 2023 , this collection). Europa is an ice-enshrouded world with interrelated geophysical processes spanning its deep interior, ocean and ice shell, surface, tenuous atmosphere, and surrounding space environment. For these reasons, the first two planetary science decadal surveys (National Research Council 2003 , 2011 ) ranked Europa exploration as a top scientific priority. Ultimately, in 2015, NASA formally initiated the Europa Clipper project.

This paper provides a summary of the Europa Clipper mission and serves as an introduction to, and synopsis of, the more detailed information found in the accompanying papers of this topical collection. Section  1 summarizes the historical and modern perspectives of Europa science and habitability as the basis for its exploration by Europa Clipper. Section  2 describes the history of major Europa mission concepts, culminating with initiation of the Europa Clipper mission. Section  3 reveals the mission’s science goal, objectives, cross-cutting science topics, and high-level requirements. Section  4 summarizes the science instruments and their capabilities and describes science investigations that use engineering subsystems. Section  5 provides an overview of the Europa Clipper flight system (spacecraft plus instrument payload), and Sect.  6 addresses the mission design and operations, including the science planning process, as well as science data products and archiving. Section  7 describes the science team structure and philosophy, including efforts toward equity, diversity, inclusivity, and accessibility. Section  8 notes coordination with ground- and space-based telescopes and other spacecraft missions. Section  9 concludes with an outlook for the mission.

1.1 Historical Perspective

1.1.1 telescopic era.

The discovery of the four main moons of Jupiter by Galileo Galilei in 1610, and possibly independently by Simon Marius (Pasachoff and Leich 2015 ), provided the most convincing evidence for heliocentrism up to that time. Before the era of space-based exploration of the solar system, ground-based telescopic observations of Europa yielded basic information about its orbit, size, density, surface composition, and global albedo pattern (Alexander et al. 2009 ). About 15% smaller in radius than Earth’s Moon, Europa was unique among the Galilean satellites with its highly reflective, relatively featureless surface, in contrast to the reddish color of Io and the lower albedo, relatively splotchy appearances of Ganymede and Callisto (e.g., Morrison and Cruikshank 1974 ). Water ice was identified on Europa’s surface from spectral observations, and its slightly red color was attributed to polysulfide compounds or ice radiation damage (Johnson and McCord 1971 ).

1.1.2 First Visits: Pioneer and Voyager

The Pioneer 10 spacecraft made the first space-based flyby of Europa in December 1973 at a distance of 324,000 km (Fimmel et al. 1977 ; Alexander et al. 2009 ). The low-resolution image obtained showed low-albedo regions emplaced on a higher-albedo background surface.

The two Voyager spacecraft were the first missions to present Europa as a geologic world (Smith et al. 1979a , 1979b ; Lucchitta and Soderblom 1982 ). Voyager 1’s closest approach in March 1979 was a distant 734,000 km, but a series of thin, low albedo lines giving the moon the appearance of a cracked egg maintained an aura of suspense for the 206,000 km encounter by Voyager 2 in July 1979. In addition to the two main terrain types—bright, icy plains and lower albedo mottled terrain—Europa was wrapped in a tangle of lineaments. Some were linear, and others were curved, suggesting that they were in some way related to tidal deformation stresses. The moon contained apparently randomly placed pits and dark spots, most less than 10 km across. The surface showed only five fresh, large (10–30 km) impact craters (Lucchitta and Soderblom 1982 ), suggesting a geologically active moon, though it was noted that the smaller pits could be modified impact craters (Malin and Pieri 1986 ). There was no spectrometer on the Voyager spacecraft suitable for compositional identifications and mapping, but the broadband filters on the cameras defined the color as slightly reddish, possibly due to sulfur-contamination from Io. Voyager’s finding of active volcanism on Io was famously predicted just days prior as due to tidal heating (Peale et al. 1979 ), and this piqued interest in whether Europa might be analogously tidally heated, potentially containing a global liquid water ocean today or in the past (Cassen et al. 1982 ).

1.1.3 The Galileo Mission

While the Voyager data began to define Europa as a geologic world, the Galileo spacecraft hinted at Europa as a potentially habitable world. Galileo entered Jupiter orbit in December 1995 and ended its mission by impacting Jupiter in September 2003, typically making a flyby of one of the Galilean satellites with each orbit. Perhaps its greatest discovery was the near-certain existence of a subsurface ocean below an ice shell today (Pappalardo et al. 1999 ; McKinnon et al. 2009 ). Magnetometer measurements implied an induced magnetic moment of 120 nT around the moon, indicative of an electrically conducting layer that is most likely salty, liquid water (Kivelson et al. 2000 ). The interpretation of data from the Near Infrared Mapping Spectrometer (NIMS) suggested surface compounds related to freezing of liquid water leading to formation of hydrated salts (McCord et al. 1998 ; Carlson et al. 2009 ). Galileo gravity data and an inferred moment of inertia suggested an outer H 2 O-layer (ocean plus ice shell) thickness of 105–160 km (Schubert et al. 2009 ).

Our current understanding of the geologic evolution of Europa comes primarily from data returned by the Galileo spacecraft (Greeley et al. 1998 , 2000 ; Bierhaus et al. 2009 ; Collins and Nimmo 2009 ; Doggett et al. 2009 ; Kattenhorn and Hurford 2009 ; Moore et al. 2009 ; Prockter and Patterson 2009 ; Daubar et al. 2024 , this collection). Among the key findings are the identification of two distinct types of plains on the moon, one bluer in near-infrared reflectance; a complex and extensive system of lineae and bands that is likely in part shaped by diurnal tides; the presence of domes, pits, and low-albedo spots (imaged at lesser fidelity by Voyager 2), which collectively became known as lenticulae; rafting of large ice blocks in regions of chaos terrain; and surface materials with embayment relationships suggestive of emplacement as a liquid or slurry. Europa’s geologic features show crosscutting relationships that suggest temporal evolution in its style of activity, with the brightest bands being among the most recent features. Dark dilational bands and elusive “subsumption” zones (Kattenhorn and Prockter 2014 ) demark areas of regional surface extension and compression, respectively. Galileo data confirm that there are a small number of large (≥20 km) impact craters, suggesting an average surface age of ∼60 Myr, with a factor of three uncertainty (Zahnle et al. 2003 ). The exact processes and mechanism of resurfacing, and the relationship to liquid water, are ripe for further study.

1.2 Current Perspective

In the nearly twenty-five years since the Galileo mission returned its first data from Europa, our understanding of Europa, and the hypotheses as to how it operates, have matured to a level that warrants a return to Europa for in-depth scientific investigation.

The dearth of large impact craters as described above and the ubiquitous fresh-appearing surface lineaments both suggest a geologically young surface. The general stratigraphy suggests a history of early ridged plains formation, subsequently disrupted by the emplacement of bands, followed by episodes of significant and widespread crustal disruption forming chaos terrain (Doggett et al. 2009 ; Leonard et al. 2024 ; Daubar et al. 2024 , this collection); this sequence suggests thickening of the ice shell with time (Pappalardo et al. 1999 ). Europa’s induced magnetic field implies an extant briny ocean (Kivelson et al. 2000 ) beneath an ice shell ten to tens of kilometers thick (Howell 2021 ). Ice shell thickness and potential transport mechanisms have key implications for the exchange of material between Europa’s surface and the ocean (Vance et al. 2023 , this collection). The thickness and rheology of the ice shell are key controls on the presence and vigor of convection (Barr and Showman 2009 ) and are related to the distribution, mechanisms, and intensity of tidally dissipated heat (Moore and Hussmann 2009 ; Sotin et al. 2009 ). The presence and sustainability of a subsurface water ocean is linked to tidal flexing and internal heating in the ice shell and/or the silicate mantle below (Roberts et al. 2023 , this collection). Tidal heating can potentially support volcanic activity on Europa’s seafloor (Běhounková et al. 2021 ), which—by analogy to terrestrial sea-floor volcanism—could be a source of chemical reductants for metabolism (Vance et al. 2023 , this collection). Europa is a cornerstone in the burgeoning field of icy world oceanography (e.g., Vance and Goodman 2009 ; Soderlund 2019 ), an example of the breadth and relevance of Europa and its subsurface ocean to comparative planetological studies.

Galileo infrared data revealed the presence of salts, particularly in chaos terrains where it is distinguished by a reddish color, suggesting active exchange processes operating in recent geologic time between the surface and the interior (Carlson et al. 2009 ; Becker et al. 2024 , this collection). More recent studies are homing in on likely salt candidates, suggesting a key role for sodium chloride and correlation of NaCl with chaos terrains (Hand and Carlson 2015 ; Trumbo et al. 2019 , 2022 ; Journaux et al. 2023 ). Recent James Webb Space Telescope (JWST) observations indicate carbon dioxide deposits spatially correlated with the chaos terrains, suggesting an endogenous source of carbon (Trumbo and Brown 2023 ; Villanueva et al. 2023 ).

Tantalizing evidence for active plumes on Europa comes from Earth-based telescopic data (Roth et al. 2014 ; Sparks et al. 2016 ), and from re-analysis of archived data from the Galileo magnetometer and plasma-wave instruments (Jia et al. 2018 ). This suggests the possibility of transport of material from Europa’s interior to the surface, atmosphere, and space environment, where it could potentially be detected remotely or sampled in situ by a spacecraft. To date, JWST observations have not spotted active plumes (Villanueva et al. 2023 ), but the search will continue. If such Europa plumes are confirmed to exist and to be sourced from the interior, plausibly as sporadically active today, the ability to directly sample plume materials would provide an unmatched opportunity to better understand the interior composition and habitability of Europa (Becker et al. 2024 , this collection; Daubar et al. 2024 , this collection).

Jupiter’s powerful magnetic field, Io’s continuous volcanic activity and corresponding torus of charged particles, and the icy Galilean satellites are a coupled system. Assessment of Europa’s space environment is key to assessing the interaction between Jupiter’s magnetic field and Europa, and measurements of Europa’s tenuous and dynamic atmosphere are key to deciphering these interactions. The intense radiation environment modifies Europa’s surface composition, and produces oxidants such as O 2 and H 2 O 2 . The transport of material from Io and interplanetary space, and their impact and implantation on Europa, indicates a need to disentangle compositional signatures that are endogenic from those that are exogenic.

From its interior to beyond its atmosphere, Europa is tantalizing: its vast subsurface ocean, enigmatic ice shell, intricate and bizarre surface features, intriguing surface composition, dynamic atmosphere, and complex interactions with the space environment make it a high priority for exploration. Atop all of this, the probable presence of the three so-called “ingredients” or conditions necessary for life—water, bioessential elements, and energy—beg for scrutiny of Europa’s astrobiological potential.

1.3 Habitability

The potential for finding life on Europa has given new momentum in recent decades to the exploration of ocean worlds in the outer solar system. The first strong indications of a subsurface ocean at Europa (Kivelson et al. 2000 ) inspired research into how extraterrestrial oceans might support life even in the absence of direct energetic input from the Sun. Just a couple decades earlier, oceanographers discovered vibrant ecosystems at Earth’s deep sea hydrothermal vents, supported entirely by highly reducing effluents created by the water–rock interactions (Baross and Hoffman 1985 ; Kelley et al. 2001 ), and multiple low-temperature metabolic reactions and organisms that do not require light (e.g., methanogens, sulfate reductants) have been known long before those discoveries. These revelations converged with direct evidence for plume activity at Saturn’s small icy moon Enceladus (Dougherty et al. 2006 ; Porco et al. 2006 ; Spencer et al. 2006 ) and tantalizing evidence for analogous activity at Europa (Roth et al. 2014 ; Sparks et al. 2016 , 2017 ; Jia et al. 2018 ), giving rise to a field of study focused on ocean worlds in the solar system and beyond (e.g., McCollom 1999 ; Zolotov and Shock 2004 ; Hendrix et al. 2019 ).

Europa is now suspected to have a global ocean directly in contact with its rocky seafloor, but this alone does not make it habitable. Life as we know it requires a suite of chemical elements and compounds, and the right physical conditions to take hold in an environment, survive, and reproduce. The ingredients for life are commonly defined as liquid water acting as a solvent, bioessential elements (C, H, N, O, P, and S) from which organic molecules can be built, and available sources of energy to support metabolic reactions (Hand et al. 2009 ). Physical and chemical conditions including a hospitable temperature, acidity, and salinity are also required. The amounts, types, and diversity of life in each setting will be determined by these conditions in terms of rate-limiting materials and supported metabolic processes (e.g., Shock and Holland 2007 ). At Europa, impacts, pervasive fractures, local disruption of the ice, and potential seafloor water–rock interaction may allow mixing of reductants and oxidants in the ocean over extended periods of time (e.g., Schmidt 2020 ). Sufficient reductants (organic matter, methane, HS − , H 2 ) may exist together with oxidants (SO \({}_{4}^{-2}\) , CO 2 , HCO \({}_{3}^{-}\) ) in Europa’s ocean to support microbial life as a consequence of water–rock reactions (Zolotov and Shock 2004 ). Some research suggests that strong oxidants produced through radiolytic processing at the surface may be a limiting factor to support life (e.g., Vance et al. 2016 ; Russell et al. 2017 ). Other work notes that reductants may be limited by a lack of fresh rock surfaces, given that faulting may be limited by overburden stress at Europa’s seafloor depth (Byrne et al. 2024 ). The interrelationships of Europa’s processes are explored in detail for constraining Europa’s habitability by Vance et al. ( 2023 , this collection).

Because an ocean world’s habitability is governed by interrelated properties and processes, characterizing the potential for subsurface life requires carefully orchestrated measurements by highly capable instruments and integrated data analyses across disciplines (Vance et al. 2023 , this collection). The many studies that culminated in the design and implementation of the Europa Clipper mission (Sect.  2 ) took place as part of the evolving understanding of ocean world habitability and life, with many mission study participants (including authors of this paper) contributing to the current discourse in the field of astrobiology. The mission has a strategized flight system design and concept of operations to ensure all investigations can obtain data near-simultaneously in location and time (Sects.  4.1 and 5 ).

The goal, objectives, and architecture of the Europa Clipper mission can serve as guidelines for future exploration of other icy ocean worlds. For example, environments within Europa’s ice shell (in addition to its ocean) may be habitable. Are there perched briny chambers in the ice shell that could host life and would those be expected to also form on other icy ocean worlds? Could there be water-filled cracks and pores within the ice shell that represent habitable regions? There could be more habitable niches in our solar system than currently imagined, and Europa Clipper’s characterizations of Europa will help constrain how widespread they could be.

2 History of Major Europa Mission Concepts

The initiation of a Europa flagship mission, which ultimately became the Europa Clipper, has a storied past. Neufeld ( 2021 ) details this history from a space policy perspective, arguing that its initiation was complicated by the new competition-based model of missions of the early 21st century, coincident with initiation of planetary decadal surveys. Brown ( 2021 ) tells of the mission’s initiation as a popular narrative, from the perspectives of some of the key people involved in the mission’s backstory. These are both excellent in-depth summaries and complementary perspectives in understanding the motivations and situations that shaped policy decisions over the 20 years from the first Europa Orbiter studies to NASA’s Phase A initiation of the “Europa Multiple Flyby Mission,” which subsequently assumed the name Europa Clipper. Figure  1 illustrates the major Europa mission concepts described next.

figure 1

Illustrations of key Europa mission concepts that preceded the Europa Clipper flight system as ultimately designed and built. a) Europa Orbiter concept (c. 1999); b) Jupiter Icy Moons Orbiter (JIMO) concept (c. 2003); c) Jupiter Europa Orbiter (JEO) of the Europa Jupiter System Mission (EJSM) concept (c. 2010); d) Europa Multiple Flyby Mission concept (c. 2012); and e) Europa Clipper as it entered Phase A (c. 2015), prior to instrument accommodation. As an indication of scale, the high-gain antenna (HGA) of each was envisioned to be 3 m in diameter, except for Europa Orbiter, which was 2 m

2.1 Europa Orbiter

Coincident with the first images of Europa from the Galileo mission in mid-1996, NASA’s administrator Dan Goldin asked JPL whether a small, dedicated mission could follow up on Galileo’s findings at Europa (Neufeld 2021 ). A small Europa orbiter concept was first considered as a Discovery-class mission (Edwards et al. 1997 ). In the era of Goldin’s “better, cheaper, faster” mantra, this concept evolved into the Europa Orbiter, which aimed to carry just 27 kg of instrument payload to Europa orbit. As technical studies demonstrated the realities of propulsion and radiation shielding requirements for such a mission, the resource needs grew. Following a 1999 community proposal call for instruments (NASA 1999 ) and subsequent review process, the mission was shelved by NASA in 2002. Most relevant to Europa mission concept evolution, it is noteworthy that the science objectives developed (NASA 1999 ) by the Europa Orbiter Science Definition Team (SDT) can be directly traced to those of Europa Clipper.

2.2 Jupiter Icy Moons Orbiter (JIMO)

The first planetary science decadal survey (National Research NRC 2003 ) endorsed Europa for the highest priority (non-Mars) flagship mission. New NASA Administrator Sean O’Keefe used this as a hook for his interest in the use of nuclear-electric propulsion in deep space. The Jupiter Icy Moons Orbiter (JIMO) mission was envisioned to orbit each of the three icy Galilean satellites in turn, carrying high-powered instruments that would perform a comprehensive study of the icy Galilean satellites and the Jovian system. The science goals and objectives for the mission were formulated by a Science Definition Team (SDT) in 2003 (Greeley and Johnson 2004 ). The overarching statement for the mission was: Explore the icy moons of Jupiter and determine their habitability in the context of the Jupiter system . The SDT established four goals spanning surface geology and geochemistry, interior, astrobiology, and Jupiter system. Given the key importance of Europa to understanding the potential habitability of icy worlds, the SDT recommended the inclusion of a Europa surface science package to perform in-situ investigations. With the departure of Sean O’Keefe from NASA, JIMO was “indefinitely deferred” from further implementation in 2005 by Administrator Michael Griffin. The JIMO mission concept collapsed under its own weight, with an estimated cost of >$27 B (NASA 2005 ). Nonetheless, the comprehensive SDT report laid a firm foundation for future Galilean satellite mission studies.

2.3 Europa Jupiter System Mission (EJSM)

In 2007, NASA embarked on establishing a set of four outer planet flagship mission studies that would compete to define the next flagship mission to the outer solar system. The targets for these were Europa, Ganymede and the Jupiter System, Titan, and Enceladus. Following completion of these studies, in 2008 NASA downselected to two concepts and joined efforts with the European Space Agency (ESA), with additional involvement from the Japan Aerospace Exploration Agency, to structure joint SDTs that would further develop the Europa Jupiter System Mission (EJSM) concept and the Titan Saturn System Mission concept. In February 2009, the EJSM concept (Greeley et al. 2010 ) was selected for continued development. EJSM envisioned a Jupiter Europa Orbiter (JEO) flown by NASA and a Jupiter Ganymede Orbiter (formerly Laplace) flown by ESA; each would investigate the Jupiter system, taking advantage of synergies and complementarities between the two missions, and each would enter orbit about its namesake satellite. The goal of JEO was to explore Europa to investigate its habitability, and its objectives were categorized as related to Europa’s ocean, ice shell, composition, geology, and local environment. However, as NASA under Administrator Charles Bolden was cutting back the planetary science budget (Neufeld 2021 ), the second planetary science decadal survey recommended that JEO’s scope be reduced to make it less expensive (National Research Council 2011 ). The ESA component moved ahead separately to become the JUpiter ICy moons Explorer (JUICE) mission (Grasset et al. 2013 ), and NASA’s Europa mission concepts returned to the study phase.

2.4 Three Europa Mission Studies

In 2011, an SDT was established that specifically included members who were critical of the JEO concept. This group began with a clean sheet of paper, to consider options for a lower-cost Europa-focused mission. Following the path advised by a Goddard-based decadal survey white paper (Smith 2009 ), the group considered options of a small and focused Europa orbiter mission that emphasized geophysics and of a Jupiter-orbiting, multiple-flyby mission that emphasized remote sensing. A third option of a lander was considered as well (Pappalardo et al. 2013 ). Concepts were to focus on Europa, without the broader Jupiter system science that was a hallmark of JEO and EJSM, and it was accepted that not all the JEO science objectives would be achieved.

The orbiter and multiple-flyby options were based on the premise that science investigations best achieved from an orbital mission would be assigned to that concept, and those best suited to a multiple flyby mission be assigned to that concept. For the initial mission concepts, a small orbiter would host a magnetometer, Langmuir probe, laser altimeter, and mapping camera, and it would perform gravity science. The multiple flyby mission would host an ice-penetrating radar, topographical imager, infrared spectrometer, and ion and neutral mass spectrometer. The small lander would host a mass spectrometer, Raman spectrometer, seismometer, magnetometer, imaging system, and microscopic imager, and the carrier element would include a reconnaissance camera; however, the lander concept was found to be too expensive. Based on the study report’s findings (Europa Study Team 2012 ), and feedback at community town halls, the multiple flyby concept was judged as enabling the greater science return per dollar, compared to the small orbiter concept.

2.5 Birth of Europa Clipper

At NASA’s request, a 2012 summer study was undertaken to understand the potential for augmenting the Europa multiple-flyby concept with geophysical capabilities that could improve ocean science (notably, magnetometry and gravity); for the small orbiter to augment ice shell, composition, and/or geology science objectives; and for each to include reconnaissance capability to feed-forward to a potential future lander (Europa Enhancement Science Definition Team 2012 ). Informally, the SDT began referring to the multiple-flyby mission as Europa Clipper.

The Europa Clipper concept was grounded in the approach exploited by Cassini in investigation of Saturn’s large moon Titan: many flybys over time could build up coverage that is analogous to that from an orbital mission (Hansen et al. 2009 ). In the case of Europa, this approach has the advantage over an orbiter of permitting data acquisition in the intense radiation environment at Europa without subjecting the spacecraft to unacceptable levels of damage, and downlinking those data when in the relatively low radiation farther from Jupiter (Buffington 2014 ), as had been established by the Galileo mission (Johnson et al. 1992 ). The Europa Clipper concept explicitly did not include Jupiter system science but was overall quite responsive to most of the JEO science endorsed by the 2011 planetary science decadal survey (National Research Council 2011 ), thus meeting the survey’s challenge for a slimmer and more affordable mission.

Beginning in Fiscal Year 2013, the United States Congress began augmenting NASA’s Europa budget relative to the agency’s budget requests, as spearheaded by Representative John Culberson of Texas (Neufeld 2021 ), who is an enthusiastic supporter of Europa exploration (Brown 2021 ). In 2013, NASA issued a call for Instrument Concepts for Europa Exploration (ICEE 2013 ), aimed to mature instruments that could potentially fly on a small orbiter or multiple-flyby mission. In 2014, NASA issued an Announcement of Opportunity for instruments that might fly aboard a Europa orbiting or multiple-flyby mission (NASA 2014 ), ostensibly for a two-step down-selection process. With Bolden’s backing, instrument selections for a Europa multiple-flyby mission were announced at a NASA press briefing held on May 26, 2015 (e.g., Showstack 2015 ), and the Europa Multiple Flyby Mission formally entered Phase A on June 17, 2015. The name Europa Clipper was adopted by NASA as the project passed into Phase B on February 15, 2017, just after Robert Lightfoot became NASA’s Administrator.

3 Science Goal and Objectives for Europa Clipper

3.1 science goal.

The search for life beyond Earth is of high scientific priority, and Europa is recognized by all three planetary science decadal surveys as one of the best sites in our solar system to search for extant life (NRC 2003 , 2011 ; NASEM 2022 ). Europa Clipper is a mission to evaluate Europa’s habitability, which can be assessed by focusing on the ingredients necessary for life (Sect.  1.3 ). The Europa Clipper mission seeks to address the NASA Planetary Science Division’s strategic science goal “of ascertaining the content, origin, and evolution of the solar system and the potential for life elsewhere by investigating the capacity of Europa and its deep ocean to harbor life in the past, present, or future” (NASA 2022 ).

The primary goal of the Europa Clipper mission is stated as: Explore Europa to investigate its habitability . Overall, the mission’s science plan is hypothesis-driven (encompassed within the phrase “investigate its habitability”) while acknowledging the great potential in serendipitous discovery (“explore Europa”). It is important to note that Europa Clipper is not designed to be a life search mission, but it can lay the foundation for future missions such as a Europa lander (Hand et al. 2022 ) that might be able to directly search for and characterize potential biosignatures. The science team’s Habitability Advisory Board (HAB) serves to assess and advise on how the mission’s three objectives will be leveraged together toward achieving the mission’s overall habitability goal.

3.2 Science Objectives

To evaluate the presence and characteristics of the ingredients for life, Europa Clipper focuses on objectives related to the interior (ocean and ice shell), composition, and geology of Europa. Specifically, the Europa Clipper science objectives are (NASA 2022 ):

Interior (ocean and ice shell): Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of the surface–ice–ocean exchange.

Composition: Understand the habitability of Europa’s ocean through composition and chemistry.

Geology: Understand the formation of surface features, including sites of recent or current activity; identify and characterize high science interest localities.

In the next sections ( 3.2.1 – 3.2.3 ), we elaborate on the three mission objectives, summarized as interior, composition, and geology, and how they each map to 15 science “themes” of the mission. Then in Sect.  3.3 , we discuss the several cross-cutting science topics, notably the search for and characterization of current or recent activity. The science objectives then flow to the formal Level 1 science objectives for the mission, discussed in Sect.  3.4 .

3.2.1 Interior (Ocean and Ice Shell)

The interior-focused objective of the mission is: Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of the surface–ice–ocean exchange . Here, “any” subsurface water is not meant to be interpreted as “all” subsurface water, but as to whether any detectable subsurface liquid water exists at Europa today, within the ice shell and/or as an ocean. Characterizing ocean properties includes further confirmation of the existence of an ocean, and its globally averaged properties of thickness, salinity, and composition—all of which are relevant to habitability. The exchange of materials among the surface, ice shell, and ocean is relevant to Europa’s habitability, given that delivery of oxidants from its surface to the ocean would promote redox disequilibria in the ocean (Roberts et al. 2023 , this collection; Vance et al. 2023 , this collection), and oceanic material exposure to the surface is key in understanding the ocean’s composition (Becker et al. 2024 , this collection) and for future exploration of the moon (Phillips et al. submitted). The Europa Clipper mission approaches this interior science objective by addressing five science themes:

Deep Subsurface Exchange: Deep vertical distribution of subsurface water, ice shell structure, and surface–ice–ocean exchange processes.

Shallow Subsurface Structure: Shallow vertical distribution of subsurface water, ice shell structure, and surface–ice exchange processes.

Ice Shell Properties: Thickness and thermophysical properties of the ice shell.

Ocean Properties: Existence, thickness, salinity, and composition of the ocean.

Surface Thermal Anomaly Search: Thermal signatures of current or recent geological activity. (Theme shared with geology objective.)

Europa’s interior will be explored with four principal approaches, meant to target different aspects of the internal structure and properties: electromagnetic induction, subsurface sounding, tidal deformation, and thermal imaging. Magnetometry and plasma measurements can be used to derive coupled solutions for the thickness and conductivity of the ocean and the thickness of the ice shell. Subsurface sounding via radar can be used to constrain the thickness of the ice shell and map the vertical subsurface structure. Gravity and shape measurements can yield information on the tidal deformation of the ice shell, thereby allowing recovery of the combined strength and thickness of the ice shell. Thermal imaging can constrain thermophysical properties of surface materials and reveal thermal anomalies caused by processes in the interior. These synergistic investigations will resolve existing ambiguities and degeneracies, providing information crucial for assessment of the habitability of this ocean world. The science team’s Interior Working Group is tasked with building a framework for interpretation of measurements elucidating Europa’s interior (Roberts et al. 2023 , this collection).

3.2.2 Composition

The composition-focused objective of the mission is: Understand the habitability of Europa’s ocean through composition and chemistry . Composition encompasses characterizing materials in the ocean, ice shell, surface, atmosphere, and local space environment, while chemistry implies identifying the properties and interactions of these constituents. The Europa Clipper mission approaches this composition-science objective by addressing six science themes:

Global Compositional Surface Mapping: Global surface composition and chemistry, including distribution and large-scale variability of materials.

Landform Composition: Surface constituents, focusing on non-water-ice and any carbon-containing compounds, on a regional and landform scale.

Atmospheric Composition: Composition and sources of non-ice volatiles, particulates, and plasma in the atmosphere, ionosphere, and possible plumes, within Europa’s Hill sphere (<8.5 Europa radii, R E ).

Space Environment Composition: Composition and sources of non-ice volatiles, particulates, and plasma in the space environment, outside of Europa’s Hill sphere (>8.5 R E ).

Remote Plume Search and Characterization: Remote detection and characterization of active plumes. (Theme shared with geology objective.)

In Situ Plume Search and Characterization: In-situ detection and characterization of recent or active plumes.

Much of our understanding of the composition and chemistry of Europa’s ocean will be learned indirectly, through studies of the surface, atmosphere, and local space environment, which can be directly interrogated through remote sensing and in-situ techniques. In turn, composition and chemistry are critical parameters in understanding the potential habitability of Europa’s ocean (Becker et al. 2024 , this collection). The science team’s Composition Working Group is tasked with ensuring that the Europa Clipper mission meets its objective to understand Europa’s ocean through composition and chemistry via a high-level, cross-instrument and cross-discipline, composition-driven approach.

3.2.3 Geology

The geology-focused objective of the mission is: Understand the formation of surface features, including sites of recent or current activity; identify and characterize high science interest localities . The geology objective encompasses the formation, evolution, and expression of geomorphic structures on the surface. Local sites of high science interest might include areas of current or recent activity, such as plume sources or geological features that show evidence of change or correlation to thermal anomalies. The Europa Clipper mission approaches the geology science objective by addressing six science themes:

Global Surface Mapping: Global distribution and relationships of geologic landforms.

Landform Geology: Morphology, topography, geology-composition correlations, and diversity of landforms.

Local-Scale Surface Properties: Local-scale morphological, thermophysical, and mechanical surface properties.

Remote Plume Search and Characterization: Remote detection and characterization of active plumes. (Theme shared with composition objective.)

Surface Thermal Anomaly Search: Thermal signatures of current or recent geological activity. (Theme shared with interior objective.)

Surface Activity Evidence : Surface properties and/or changes indicative of current or recent activity.

Europa’s ice-based geology provides an unparalleled opportunity to investigate the dynamics of the ice shell, surface–ice–ocean exchange processes, and global-scale tectonic and tidal forces. Geological investigations include using remote sensing techniques to search for and characterize current or recent activity in the form of active plumes, and evidence for surface changes or extremely fresh surface exposures. Integration of multiple datasets from all of Europa Clipper’s instruments will be key to significantly advancing our understanding of Europa’s geology. In turn, understanding geologic features, their formation, and any recent activity are key inputs for constraining Europa’s habitability. Europa Clipper’s Geology Working Group is coordinating investigations that will accomplish Europa’s geology objective. Outstanding issues and open questions about Europa’s geology and details of how Europa Clipper will address them are discussed in Daubar et al. ( 2024 , this collection).

3.3 Crosscutting Science Topics

Beyond the focus of Europa Clipper’s three science objectives, the Europa Clipper’s habitability goal calls for consideration of cross-cutting science topics as well. Four such topics stand out: current and recent activity, radiation environment, geodesy, and reconnaissance for a potential future lander. During development, the Europa Clipper team has had a “focus group” in each of these areas, to ensure that these topics are addressed holistically. Each of these topics is briefly discussed next, in turn.

3.3.1 Current and Recent Activity

Europa Clipper will investigate the possibility of current or recent activity: evidence for and subsequent characterization of current or recent activity can be made through the detailed investigations within any of the three primary Europa Clipper science objectives. The moon’s geologically young surface (Zahnle et al. 2003 ; Bierhaus et al. 2009 ) suggests that geologic processes have acted in the recent past to erase older terrains, and these processes may continue to the present day so could be observable by Europa Clipper. These processes could include cryovolcanism, tectonism, impact cratering, sublimation, and generation of plumes; see Daubar et al. ( 2024 , this collection) for description of the specific proposed formation mechanisms for stratigraphically recent landforms such as chaos terrain and some younger ridges and bands. Active processes could indicate the presence of a subsurface ocean and whether it currently affects the surface, elucidate subsurface structure and dynamics, and constrain relative ages of surface features. A key example of potential current activity is plumes that have been tentatively detected through Hubble Space Telescope observations (Roth et al. 2014 ; Sparks et al. 2016 , 2017 ) and through reanalysis of Galileo field and particle data (Jia et al. 2018 ). Europa Clipper will continue the search for and characterize any plumes or plume deposits (Becker et al. 2024 , this collection; Daubar et al. 2024 , this collection). Other examples of current indications of activity could include thermal anomalies that might accompany ongoing geologic activity, direct observations of physical or compositional surface changes, and recently emplaced surface materials. Details on these indicators of current and recent activity, the search strategy, and how the integrated instrument suite on Europa Clipper will investigate them are provided in Daubar et al. ( 2024 , this collection) and Becker et al. ( 2024 , this collection).

3.3.2 Radiation Environment

Europa resides at the edge of Jupiter’s immense and intense radiation belts. A benefit of the Europa Clipper mission design is that the spacecraft spends relatively little time in this dangerous environment; instead, it flies by Europa to collect vital data before spending the rest of each Jupiter orbit in the relatively benign middle magnetosphere. Europa itself is permanently bathed by energetic particles that speed past the moon on Jupiter’s magnetic field lines. Europa’s tenuous exosphere provides some protection but many of these particles impact the surface and are associated with darkened features on Europa (Paranicas et al. 2001 ). Europa Clipper measurements of Europa’s plasma and radiation environment will provide vital data to characterize the impact of these precipitating particles and context for other Europa data. Specifics on how Europa Clipper interrogates the local radiation environment are provided by Meitzler et al. ( 2023 , this collection), and instrument-specific descriptions are provided by Westlake et al. ( 2023 , this collection) and Kivelson et al. ( 2023 , this collection).

3.3.3 Geodesy

The study of Europa’s geodesy connects many investigations pursued by Europa Clipper. A common geodetic framework is needed for the co-registration of datasets and for overall consistency between science, engineering, and operations; this is also important to any potential future landed mission. That framework is defined by the rotation state and shape of Europa. The Europa Clipper project has adopted the official International Astronomical Union reference frame (Archinal et al. 2018 ). Unknowns include the potential existence of librations at different periods. Other key geodetic parameters that will be better constrained from the Europa Clipper observations include Europa’s obliquity and pole position and the ephemeris of Europa and the other icy Galilean satellites. Europa’s reference frame will be firmed up after the arrival of Europa Clipper, starting with refining the position of the prime meridian, and the reference frame will be improved throughout the mission based on increasing spatial and temporal coverage. Geodetic observations of Europa further include the gravity field and the tidal Love number \(k_{2}\) through gravity science (Mazarico et al. 2023 , this collection), as well as another tidal Love number \(h_{2}\) through a combination of altimetric and imaging observations (Blankenship et al. 2024 , this collection; Turtle et al. 2024 , this collection). The tidal Love numbers determine the response of Europa to tidal forcing by Jupiter and depend on the moon’s internal properties, in particular the presence and depth of an ocean. These properties bring complementary information to other investigations aimed at constraining Europa’s interior (Roberts et al. 2023 , this collection).

3.3.4 Reconnaissance for a Potential Future Lander

Potential follow-up missions to Europa have been studied by NASA, notably the Europa Lander mission concept (Hand et al. 2022 ). A lander or similar in-situ surface and/or subsurface mission is a logical future step in the exploration of this ocean world (Phillips et al. 2020 ) and would provide ground-truth and detailed measurements to address key questions, including, but not limited to, astrobiology investigations (Hendrix et al. 2019 ). Collection of reconnaissance data is not a requirement for Europa Clipper; however, whatever the next Europa mission looks like, it is almost certain that it will rely on the data collected by Europa Clipper. Therefore, the collection of reconnaissance data by Europa Clipper will be critical for identification of potential landing sites that satisfy criteria for both science value and engineering safety, for a future landed mission. The high-resolution, multi-investigation datasets that permit reconnaissance are obtained only near the closest approach (≤100 km altitude) of each close flyby. Thus, one of the close approach locations of the Europa Clipper tour (and/or a location viewed during a potential extended mission) has a high likelihood of being the landing site for a future landed Europa mission. The definition of close approach locations that fulfill landing site reconnaissance needs is outlined in Daubar et al. ( 2024 , this collection) and Phillips et al. (submitted), which provide detailed information on the reconnaissance strategy for a future landed mission.

3.4 Science Requirements

3.4.1 program-level requirements.

The formal high-level (Level 1) science requirements and mission success criteria of the Europa Clipper mission are documented in NASA’s Europa Clipper Program Level Requirements Agreement (NASA 2022 ). The three Europa Clipper science objectives (interior, composition, and geology), plus the cross-cutting science topic on current and recent activity (see Sect.  3.3.1 ), comprise the four science categories of Europa Clipper’s Level 1 science requirements. In turn, these four Level-1 science categories map to nine Baseline Science Requirements and eight Threshold Science Requirements, along with four Mission Success Criteria. These program-level requirements are summarized and mapped in Table  1 . The science themes that follow from the three science objectives (summarized for each science objective in Sect.  3.2 ) map to the Europa Clipper project’s internal “Guiding Level 2” science requirements, which are instrument specific and summarized in Table  2 .

3.4.2 Science Traceability and Alignment Framework

The science of Europa and the Europa Clipper mission is inherently cross-disciplinary, with program- and project-level science areas that must be addressed through a combination of investigations to achieve full success. To assess the various contributions and their sensitivity, two related tools were developed by the Europa Clipper systems engineering team in conjunction with Project Science leadership: the Project-domain Science Traceability and Alignment Framework (P-STAF) and the Measurement-domain Science Traceability and Alignment Framework (M-STAF) (Susca et al. 2017 ; Jones-Wilson et al. 2018 ).

The P-STAF links the Europa Clipper science investigations to the Level-1 requirements, designating investigation contributions as Primary, Independent, Supportive, or Enhancing. Using a set of hierarchical relations, the P-STAF permits quantitative assessment of science impacts for various systems trade studies. The M-STAF is a means to express science measurement requirements in a machine-readable language, which feeds into the quantitative evaluation made through the P-STAF.

These tools, when incorporated into the analysis of potential Jovian tours (Sect.  6.1.2 ), provide a means to determine when and the degree to which the science requirements are met, along with a measure of science margin. This information can, in turn, help to guide science-based assessments during mission development. The P-STAF is necessarily somewhat subjective, and its interpretation must be guided by the Project Scientist. With these caveats fully in mind, these tools have proved extremely valuable in enabling rapid science assessments in trade studies and other decision-making processes during mission development.

4 Payload Overview

4.1 synergistic and comprehensive payload for exploring europa.

As a flagship-class NASA mission, Europa Clipper possesses a comprehensive payload of scientific instruments that will be used to study Europa and its space environment, and to assess Europa’s habitability (Fig.  2 ). Nine instruments were chosen by NASA Footnote 1 through community competition (Sect.  2.5 ), broadly divided into descriptive categories of remote sensing and in-situ measurements. Morover, spacecraft engineering subsystems provide science data in two additional areas. The principal (Level 2) science requirements addressed by each of the NASA-selected science investigations are summarized in Table  2 .

figure 2

The position of each instrument on the Europa Clipper spacecraft, illustrated in the spacecraft’s stowed position. The optical remote sensing instruments (Europa-UVS, EIS NAC, EIS WAC, MISE, and E-THEMIS) have their apertures along the spacecraft’s +Y direction, which will be oriented nadir (toward Europa) during flybys; all except MISE are co-located on the “nadir deck.” MASPEX and SUDA are oriented along the spacecraft’s +Z axis, which will be oriented in the ram direction (the direction of spacecraft motion) during flybys. The REASON antennas are mounted on the edges of the solar array panels and will be oriented parallel to Europa’s surface during flybys. The positions of PIMS Upper and PIMS Lower permit combined view of plasma around the spacecraft with only minor obstructions, and the three ECM sensors and 8.5-m magnetometer boom are stowed within a cannister for deployment after launch. Accommodation considerations have ensured that all instruments can operate simultaneously and synergistically. Illustration by Steve Barajas (JPL/Caltech)

The remote sensing instruments cover a wide swath of the electromagnetic spectrum with only minor gaps: coverage from 0.055–0.206 μm for the Europa Ultraviolet Spectrograph (Europa-UVS), from 0.350–1.05 μm for the Europa Imaging System (EIS) Narrow Angle Camera (NAC) and Wide Angle Camera (WAC), from 0.8–5.0 μm for the Mapping Imaging Spectrometer for Europa (MISE), and from 7.0–70 μm for the Europa Thermal Imaging System (E-THEMIS). Sub-meter resolution will be obtained by EIS NAC on the closest flybys (25–100 km altitude), with best pixel scales from 100 km altitude for EIS WAC (22 m), Europa-UVS (209 m), MISE (25 m), and E-THEMIS (12 m). These optical remote-sensing instruments will together perform imaging, compositional mapping, and searches for color, albedo, or textural differences characteristic of plume deposits. EIS will obtain data on the albedo, color, and surface landforms. Europa-UVS and EIS will search for and characterize any active plumes, and Europa-UVS will characterize Europa’s tenuous atmosphere. E-THEMIS will map daytime and nighttime temperatures to characterize the regolith, erosional processes, and the thermal state of the ice shell and surface. The Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) is an ice-penetrating radar instrument that has both high frequency (HF) and very high frequency (VHF) antennas operating at 9 and 60 MHz frequency (33.3 and 5 m wavelength), respectively. REASON will be used to map the distribution of surface and subsurface materials, including possible brines and salts, search for the ice–ocean interfaces, characterize the moon’s regolith, and gather data to understand exchange processes in Europa’s subsurface; it will also provide topographic profiles through altimetry.

The in-situ experiments will offer a similarly comprehensive view of the magnetic field and particle environment encompassing Europa. The Mass Spectrometer for Planetary EXploration – Europa (MASPEX) and the Surface Dust Analyzer (SUDA) will identify the major atmospheric components, including volatiles, and characterize their connection to geologic features, possible plumes, and the subsurface ocean. The Plasma Instrument for Magnetic Sounding (PIMS) will characterize Europa’s ionosphere and the Jovian magnetosphere and their influence on observed magnetic fields. The Europa Clipper Magnetometer (ECM) will characterize Europa’s induced magnetic field to constrain the ocean and ice shell thicknesses and ocean conductivity. Finally, the Gravity and Radio Science (G/RS) experiment will characterize Europa’s time-varying gravitational tides ( \(k_{2}\) ) to confirm the existence of Europa’s subsurface ocean.

Europa Clipper was deliberately designed such that during a nominal Europa flyby all the instrumentation can gather data simultaneously. Figure  3 illustrates the field of view (FOV) of each of the optical remote sensing instruments, which are co-boresighted and nadir-pointed and mounted on the stable “nadir deck” (Fig.  2 a; also see Sect.  5 ). The EIS NAC (2-axis gimbal) and MISE (1-axis scan mirror) instruments can view off-nadir during a flyby, pointing independently of the spacecraft. Europa-UVS and E-THEMIS, and color imaging by EIS NAC, rely on spacecraft scanning when viewing from afar to build a large-area image; all can operate in pushbroom mode through a flyby. The REASON VHF (×4) and HF (×2) antennas are all affixed to the solar arrays (Fig.  2 ), ensuring consistency in electromagnetic compatibility with respect to the arrays, and the antenna long-axes are parallel to the direction of travel and parallel to Europa’s surface during a flyby. The in-situ instruments most sensitive to directionality, MASPEX and SUDA, are ram-pointed (i.e., in the direction of spacecraft motion). Generally agnostic to spacecraft orientation are ECM, which has three sensors affixed to an 8.5-m-long boom, and PIMS which has two separated sensors (PIMS Upper and PIMS Lower) each with two Faraday cups with broad fields of view. Gravity science can be performed with any of six spacecraft antennas (3 fixed fanbeam, 2 low-gain, and 1 medium-gain) that are appropriately directed toward Earth for tracking during a given flyby.

figure 3

Illustrated is the field of view (FOV) of each of the optical remote sensing instruments (Europa-UVS, EIS NAC and WAC, MISE, and E-THEMIS), along with the relevant field of regard (FOR) over which EIS NAC (with ability to be gimbaled along- and cross-track) and MISE (with along-track scan ability) can view via instrument pointing. At right, the central portion is magnified 10x. Europa-UVS FOV is 7.3°×0.1° + 0.2°×0.2° and is offset ∼0.6° ahead of the Y-axis in the +Z direction (Retherford et al. 2024 , this collection); EIS NAC FOV is 2.35°×1.17° with gimbal FOR ±30° along- and cross-track from the NAC FOV center; EIS WAC FOV is 48°×24°; MISE FOV is 4.3°×0.007° with scan mirror FOR ±30° along-track; E-THEMIS FOV is 5.7°×4.3° with boxed areas representing the active pixel regions of its three wavelength bands. All locations are relative to the spacecraft’s +Y axis (center), based on pre-launch testing, and will be verified in flight. (Note that REASON is a nadir-profiling sounding instrument and therefore is not illustrated)

The ability to observe Europa with all instruments simultaneously is greatly beneficial for four key reasons. (1) The science of Europa, hence the science requirements of Europa Clipper, are cross-cutting and best addressed synergistically through observations that are overlapping in location and time. (2) Given the Jovian radiation environment near Jupiter, observing time is the mission’s most significant limited resource, so simultaneous observing capability maximizes the science potential. (3) Repeating a basic template of observations for every instrument and every flyby reduces operational complexity. (4) A science team operates better together when there is little need for resource competition or significant negotiation (cf. Vertesi 2020a ).

The following sections provide further detail for each of the nine Europa Clipper science instruments, plus gravity science and radiation science. Completed hardware for each science instrument is shown in Fig.  4 .

figure 4

Image of each of the Europa Clipper science instruments, upon delivery to the spacecraft and before thermal blanketing: a) Europa Ultraviolet Spectrograph (Europa-UVS); b) Europa Imaging System (EIS) Wide Angle Camera (WAC), and c) Narrow Angle Camera (NAC); d) Mapping Imaging Spectrometer for Europa (MISE); e) Europa Thermal Emission Imaging System (E-THEMIS); f) Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) High Frequency (HF) antenna in stowed configuration, and g) Very High Frequency (VHF) antenna stowed; h) MAss Spectrometer for Planetary EXploration – Europa (MASPEX); i) SUrface Dust Analyzer (SUDA); j) Europa Clipper Magnetometer (ECM) fluxgate assembly; and k) one of the two Plasma Instrument for Magnetic Sounding (PIMS) sensors. Image credits: a) NASA / JPL-Caltech / Southwest Research Institute; b) and c) Johns Hopkins Applied Physics Laboratory / Craig Weiman; d) NASA / JPL-Caltech; e) Arizona State University; f) and g) NASA / JPL-Caltech; h) NASA / JPL-Caltech / Southwest Research Institute; i) NASA / University of Colorado, Boulder / Glenn Asakawa; j) UCLA / NASA / JPL-Caltech; k) Johns Hopkins Applied Physics Laboratory / Ed Whitman

4.2 Remote-Sensing Instruments

4.2.1 europa ultraviolet spectrograph (europa-uvs).

To study Europa at ultraviolet wavelengths, Europa Clipper will employ the Europa Ultraviolet Spectrograph (Europa-UVS) instrument (Fig.  4 a; Retherford et al. 2024 , this collection). The sixth and most recent instrument in a line of ultraviolet spectrographs that extends back to Rosetta’s Alice instrument, the design and fabrication of the Europa-UVS instrument leverages a significant degree of heritage from its predecessors: Rosetta-Alice, New Horizons’ Pluto-Alice, the Lunar Reconnaissance Orbiter’s Lyman Alpha Mapping Project, Juno-UVS, and Europa-UVS’s sister instrument, JUICE-UVS, which is flying on ESA’s JUICE mission. The Europa-UVS microchannel plate (MCP) uses a set of borosilicate glass plates, which makes it less sensitive to gamma rays than typical MCPs. In addition, the MCPs have an atomic layer coating of MgO to make the detector resistant to the gain degradation, which traditional MCPs are subject to. The MCP detector has a deadtime <1 μs and dark noise counts an order of magnitude lower than required (Davis et al. 2021 ). While operating in histogram mode, the detector can be configured to bin data in the spatial and spectral dimensions in a customized set of bin sizes to optimize data volume for a given observation.

The specific capabilities of the Europa-UVS instrument allow it to investigate Europa’s atmosphere, search for and characterize any active plumes, explore the surface composition of Europa, and provide information about the interaction between Europa and the Jovian magnetosphere. Ultraviolet photons with wavelengths between 55 and 206 nm enter the instrument through a slit that defines its field of view. Most observations with Europa-UVS, such as stellar occultations observations, airglow/aurora mapping, and Jupiter transit imaging, will employ the main entrance airglow port (AP) with a 7.3°×0.1° field of view (FOV). While observing through the AP, Europa-UVS has an angular resolution of 0.16° (2.8 mrad). The high-spatial-resolution port (HP) consists of an aperture door that stops down the AP and permits observations of bright objects at resolutions higher than that possible through the full AP. Use of the HP provides a finer angular resolution of 0.12° (2.0 mrad) at the expense of a decreased signal-to-noise ratio (SNR). A separate solar port (SP) has its aperture offset from the AP by 40° and can support observations of occultations of the Sun by Europa. A pick-off mirror directs light entering through the SP onto the instrument’s main optical path. The bottommost portion of the Europa-UVS slit, with a 0.2°×0.2° FOV, is sized wider to accommodate the angular size of the Sun at Jupiter’s orbital distance with margin. Europa-UVS can acquire data at a spectral resolution of 2 nm or better across most of its spectral range. This allows oxygen emission lines at 130.4 and 135.6 nm to be cleanly separated from the 133.5-nm solar carbon lines reflected by Europa’s surface and permits mapping of Europa in emission lines tied to atomic species of specific interest.

During closest approach, the instrument will be configured to observe Europa’s aurora, tenuous atmosphere, or surface, as optimized for the geometry of the encounter. Prior to and following the nadir-pointed phase, Europa-UVS will be used to scan the satellite, creating UV maps of auroral and atmospheric emissions and surface reflectance. Observations to be implemented farther from closest approach to Europa include Jupiter transit observations, during which Europa will be scanned with Europa-UVS as it transits the illuminated disk of Jupiter. These observations will allow the full disk of Europa to be imaged in the ultraviolet using reflected light from Jupiter as an illumination source, and they will provide a powerful means of probing Europa’s tenuous atmosphere and of searching the limb for plume activity. Solar and stellar occultation observations by Europa provide a particularly sensitive means of measuring the composition and structure of Europa’s atmosphere. Thousands of UV-bright stars have been identified as candidate occultation stars, and >100 occultation observations are planned. O 2 absorption will be easily detectable, with constraints placed on H 2 , H 2 O, CO 2 , SO 2 , and CO abundances in Europa’s atmosphere. Should the path of a stellar occultation traverse a Europa plume, Europa-UVS can provide unique and detailed information on the abundance of any other gas constituents present within the plume, including hydrocarbons such as C 2 H 2 .

4.2.2 Europa Imaging System (EIS)

The Europa Imaging System (EIS) (Turtle et al. 2024 , this collection) has been designed to explore Europa through global high-resolution coverage, three-dimensional digital terrain models (DTMs), and meter-scale imaging. EIS consists of two visible imaging cameras, the Wide Angle Camera (WAC, Fig.  4 b) and the Narrow Angle Camera (NAC, Fig.  4 c). The WAC has a 48°×24° FOV and a 218- μrad instantaneous FOV (iFOV), achieving ∼11 m/pixel, ∼45-km wide cross-track imaging swaths from 50-km altitude. The NAC has a 2.35°×1.17° FOV and a 10- μrad iFOV, achieving 0.5 m/pixel, 2-km wide cross-track imaging swaths from 50-km altitude.

The NAC has a two-axis gimbal, which allows independent pointing and enables near-global coverage, adding capability and flexibility with minimal impact to spacecraft operations or other instruments. The cameras have identical rapid-readout, radiation-hard 4096×2048-pixel complementary metal oxide semiconductor detectors and can operate in both framing and pushbroom imaging modes. Six broadband filters enable color observations when in pushbroom mode. Real-time processing during pushbroom imaging provides additional capabilities, including WAC 3-line stereo, digital time delay integration (TDI) to increase SNR, and readout strategies to measure and correct pointing jitter.

The NAC’s high-resolution imaging will enable a detailed investigation of Europa’s geology; for example, stereo observations will be used to characterize geological structures and color observations will be used to search for evidence of recent activity. Global mapping at ≤100 m/pixel and regional stereo will be used to study global geologic relationships and provide context for observations by other instruments. High-phase-angle imaging will be used to search for faint plumes. Limb fits will constrain the ice shell thickness.

The WAC will perform pushbroom stereo imaging to generate stereo DTMs for three-dimensional geologic mapping. Pushbroom color imaging will be used to identify surface units and characterize recent activity. Ground track imaging swaths and stereo DTMs provide context and characterize cross-track clutter for radar sounding.

Together, the EIS WAC and NAC will image >90% of Europa’s surface at ≤100-m pixel scale (while previously, only ∼14% of Europa has been imaged at ≤500 m/pixel). They will acquire data critical for integration with other science investigations, including cartographic and geologic mapping, regional and high-resolution digital topography, color and photometric data products, a database of plume-search observations, and a geodetic control network that can be tied to radar altimetry.

4.2.3 Mapping Imaging Spectrometer for Europa (MISE)

The Mapping Imaging Spectrometer for Europa (MISE) (Fig.  4 d; Blaney et al. 2024 , this collection) uses infrared reflectance spectroscopy to map the surface composition at the spatial scales relevant to geologic processes on Europa. Measurement of infrared spectral characteristics enable the identification and mapping of organics, salts, acid hydrates, water ice phases, altered silicates, radiolytic compounds, and warm thermal anomalies. MISE will map compositionally diagnostic properties at ≥14 sites with <50 m/pixel spatial, and with ≤10 km/pixel scale with images acquired at or below 40,000 km altitude. MISE will return infrared spectral information for each pixel in each acquired image (hence the full MISE image is referred to as a “cube”).

High-resolution spectral information from local-to-global perspectives will be used to establish the composition of specific landforms. Surface and subsurface geologic processes, including recent or current activity, and surface–ocean exchange can be inferred using these measurements. Salt chemistry observable on Europa’s surface likely reflects both ocean–ice chemical interactions, which provide the starting chemistry, and the geologic processes that may alter that chemistry as material makes its way to the surface, e.g., fractional crystallization of brines. Europa’s surface is dominated by water, as ice or in hydrated materials. By determining ice crystallinity and radiolytic products in the ice, the thermal and radiolytic history of the surface can be inferred; for example, young surfaces will lack radiolytic implantation signatures. Thermal emissions from small, relatively high-temperature hot spots can also be mapped, permitting the identification of recent cryovolcanic events.

The distribution maps of astrobiologically relevant compounds (specifically, organics and salts) and their geologic context can contribute to assessment of whether Europa’s ocean is capable of supporting life. The generally accepted ingredients for an environment capable of hosting life as we know it include liquid water, bioessential elements, and a source of free energy. MISE will pursue three lines of evidence to assess habitability: 1) the presence and distribution of organics including complex organics such as amino acids; 2) salt chemistry of the ocean; and 3) evidence of current and recent surface changes as a proxy for internal activity.

MISE is a pushbroom, Dyson imaging spectrometer, covering the spectral range 800–5000 nm with a spectral resolution of 10 nm. The optics employ a ±30° along-track scan mirror to provide target motion compensation at low altitudes and increase coverage at high altitudes. The instrument has an iFOV of 250 μrad (full angle), corresponding to images with better than 10 km/pixel resolution at an altitude of 40,000 km. The FOV is 4.3° in the cross-track direction, and from 0.75° to 4° in the along-track direction. To achieve sufficient data quality, the detector and spectrometer must operate at cryogenic temperatures during data acquisitions. To achieve the required cryogenic temperatures, the instrument uses a hybrid passive-active cryogenic thermal architecture, consisting of one pulse-tube cryocooler coupled to a radiator. Most of the acquired MISE data are buffered, processed, and compressed within the instrument prior to being sent to the spacecraft avionics for storage then downlink.

4.2.4 Europa Thermal Emission Imaging System (E-THEMIS)

The Europa Thermal Emission Imaging System (Fig.  4 e, E-THEMIS) (Christensen et al. 2024 , this collection) is a nadir-pointed three-band thermal infrared imager that will map temperatures and detect heat flow anomalies (“hot spots”), identify passive thermal signatures of geologically recent changes, and reveal the physical properties of surface materials. Specifically, E-THEMIS observations will be used to derive thermal inertia, block abundance, regolith thickness, porosity, internal heterogeneities, and surface roughness. E-THEMIS may also detect plumes if they have an infrared thermal emission signature. As such, E-THEMIS will provide critical information to determine Europa’s nature and evolution, with an emphasis on recent and ongoing activity. Moreover, data generated by E-THEMIS will help identify scientifically interesting and safe landing sites for future missions.

E-THEMIS will acquire observations during two distinct phases of each Europa encounter. First, the entire disk will be imaged both day and night at moderate spatial resolution (∼10 km/pixel) in all three bands during global scans, to distinguish thermal inertia, albedo, and heat flow variations. Second, near closest approach, multi-kilometer wide swaths of the surface will be imaged at high spatial resolution (<100 m/pixel) to distinguish geologic landforms from their surroundings.

To achieve these aims, E-THEMIS is designed with broad spectral range over three bands (7–14 μm, 14–28 μm, and 28–50+ μm) to measure surface temperature as cold as 90 K; high radiometric precision (<0.2 K at 90 K) and accuracy (<2 K at 90 K) to distinguish subtle lateral temperature variations; and a wide FOV (i.e., 5.7° cross-track by 4.3° along-track) resulting in moderate-to-high surface resolution depending on altitude. The instrument can operate in framing mode, where full frame images are collected and optionally co-added in time in each band, or in TDI mode, where consecutive rows are offset to remove the spacecraft motion and then summed to increase SNR. Images will be composed of up to 448 cross-track pixels with a 10.1-km wide image swath from 100 km.

4.2.5 Radar for Europa Assessment and Sounding: Ocean to Near-Surface (REASON)

Sounding with the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) (Figs. 4f and 4g; Blankenship et al. 2024 , this collection) will address key questions regarding Europa’s habitability—including the existence of any liquid water—using radar sounding, altimetry, ranging, reflectometry, and plasma analyses. These investigations require a dual-frequency radar instrument with simultaneous shallow and full-depth sounding that is designed for performance robustness in the challenging environment of Europa.

The scattering and dielectric properties of the upper brittle layer will reveal clues about Europa’s geology, while deeper attenuation and possible strong dielectric interfaces may provide a direct measure of the nature of subsurface liquids and other non-ice materials. The longer HF wavelength band of the dual-frequency system is designed for full-depth penetration up to 30 km into the ice shell and is insensitive to interference from surface roughness compared to the VHF. The shorter VHF wavelength band is optimized to probe structures in the upper 3 km of the ice shell with sufficient resolution to test hypotheses of the presence of near-subsurface liquid water and is less susceptible to Jovian noise and plasma delay effects compared to the HF. In addition, the VHF capability can serve to sound the deeply into the ice shell, potentially sounding its full-depth, to complement observations in the HF band when the latter is exposed to Jovian noise. The VHF band also allows for measurements of surface relief and tidal flexure to detect the subsurface ocean. The combination of longer and shorter wavelengths serves to measure the total electron content of the ionosphere directly beneath the flight system and can detect plumes by local electron enrichment of the ionosphere.

REASON comprises a 60 MHz center frequency (5 m wavelength) band (VHF) with a 10 MHz bandwidth optimized for shallow sounding, and a 9 MHz center frequency (33.3 m wavelength) band (HF) with a 1 MHz bandwidth optimized for full-depth ice shell sounding. Both the VHF and the HF antennas are mounted on the edge of the solar arrays. The HF antennas consist of two 17.6-m dipole antennas. The four-element VHF antennas are arranged in a linear array of 2.76 m folded dipole antennas. Both sets of antennas are mounted on and oriented perpendicular to the solar arrays, and they will be deployed soon after launch.

To discriminate clutter along off-nadir portions of the sub-spacecraft swath, the REASON 60 MHz band is divided into two receiving channels for interferometry. This technique complements cross-track topographic imaging by EIS. REASON performance capabilities include 30 m vertical resolution depth sounding from 300 m to 3 km, and 300 m vertical resolution from 1 to 30 km.

4.3 In-Situ Instruments

4.3.1 mass spectrometer for planetary exploration – europa (maspex).

The MAss Spectrometer for Planetary EXploration (MASPEX) – Europa (Fig.  4 h; Waite et al. 2024 , this collection) is a reflectron-type multi-bounce time-of-flight mass spectrometer that will analyze the atomic, molecular, and isotopic composition of neutral volatiles in Europa’s exosphere. MASPEX has a spectral mass range of 2 to 500 u, achieves a spectral mass resolution m/ \(\Delta \) m of 4,275 or greater at 50 m/z, and is sensitive to chemical species with relative abundances as low as 1.7 × 10 −4 (in ambient mode). MASPEX will explore the composition of Europa’s exosphere from multiple sources (sputtering, thermal desorption from the surface, and potential active features) to evaluate the habitability potential of Europa’s interior.

The MASPEX functional principle (Brockwell et al. 2016 ; Waite et al. 2024 , this collection) is that neutrals entering the instrument are first ionized by electron ionization inside a closed ion source. The ions are then accelerated into the mass spectrometer, and their mass range and resolution are determined by time of flight. Ions can bounce multiple times between the ion optics (controlled by a time-dependent electric field) to increase path length and travel time. Longer time of flight increases mass resolution as ions with different masses have more time to separate over multiple bounces within the ion optics. Once sufficient bounces have separated (resolved) the ions in time, within the mass range of interest, ions are released for detection on a micro-channel plate electron multiplier. The analog signal from the micro-channel plate detector is then digitized in the MASPEX electronics box, and the mass spectra are packetized for storage and downlink. MASPEX is equipped with a calibration gas system, which delivers controlled amounts of a standard calibrant to routinely calibrate ion mass with respect to time of flight and to determine detector gain for absolute quantification.

During Europa flybys, MASPEX will acquire mass spectra over specific mass ranges of interest with a cadence of 5 s, to measure the atmospheric composition as function of altitude and location. The spatial resolution on the surface is proportional to flyby altitude, allowing MASPEX to achieve a spatial resolution of 35 km or better near closest approach. In addition, MASPEX is equipped with a cryotrap made of sintered stainless steel and cooled by a cryocooler. For nominally four hours around closest approach, the cryotrap will be exposed to the Europa environment inside the mass spectrometer and will adsorb volatiles that will remain trapped inside the instrument until more detailed analysis will occur around apojove, where the radiation environment and associated detector noise are more benign. MASPEX is also able to detect and analyze ice grains if any are encountered during the flybys, and it will measure the composition of Europa torus volatiles at least once over the course of the mission.

4.3.2 SUrface Dust Analyzer (SUDA)

The SUrface Dust Analyzer (SUDA) (Fig.  4 i; Kempf et al. 2024 , this collection) is a time-of-flight (TOF), reflectron-type, impact ionization mass spectrometer that provides elemental and molecular composition of ice and dust particles present in Europa’s exosphere. These dust particles could be either ejected from the surface and/or subsurface of Europa in a ballistic trajectory (endogenic dust particles), or they could come from the Jovian system (exogenic dust particles), such as from the Io torus (as nanograins) or from other Galilean moons (as ring particles). SUDA is an instrument that is open to space all the time after its lid is opened during cruise by a one-time operation. Most of the critical measurements are carried out when the SUDA boresight is aligned with the spacecraft’s ram direction, which aligns at the time of Europa close flybys with the Kepler ram direction, i.e., the impact direction of grains moving in circular bound prograde orbits.

Following on the heritage of the Cassini Cosmic Dust Analyzer mass spectrometer, which provided compositional mapping of the surface and plumes of Enceladus, a new method for obtaining the surface composition of airless planetary bodies was developed. The compositional mapping technique relies on the fact that impacts of fast, typically 100-μm interplanetary meteoroids on a moon’s surface produce ejecta particles, which populate a tenuous, approximately spherically symmetric cloud around the moon. Information about the geological activity on and below Europa’s surface, in particular the material exchange between the interior and the surface, is contained in the types and amounts of inorganic and organic components embedded in the surface. The dust detector onboard the Galileo spacecraft detected the ejecta dust clouds around all the icy Galilean moons of Jupiter, including Europa (Krüger et al. 2003 ), providing preliminary data for developing models and measurement strategies for SUDA.

SUDA will measure the mass, speed, and charge of impacting grains, along with their elemental, molecular, and isotopic composition, with a spectral resolution m/ \(\Delta \) m ≤1 u for atomic mass m ≤200 u. In addition to chemical composition of dust and ice grain particles, SUDA provides information on the location of the source of these grains that are ejected in a parabolic path from Europa’s surface by micrometeorite impacts. SUDA data will provide the particle composition if flown through an active plume or over recently active surfaces, producing signatures similar to those of surface ejecta particles.

SUDA works in two polarities (negative and positive ion modes), with one of the polarities active during any given flyby of Europa. Negative ion mode will be used to identify negative ions in salts contained in ice and dust grains that have been ejected from the surface, while positive ion mode (the default mode) will be used to identify cations in these salts, informing the salinity of ejected grains. In addition to characterizing salts, SUDA can detect organic compounds, such as amino acids and fatty acids, at parts per million concentrations, if present in the ejecta dust particles or plumes. In essence, SUDA will provide physical properties and composition of dust particles that help us understand Europa’s habitability through informing salinity and detecting organic compounds.

4.3.3 Europa Clipper Magnetometer (ECM)

The Europa Clipper Magnetometer (ECM) (Fig.  4 j; Kivelson et al. 2023 , this collection) will measure the amplitude of the inductive signature at Europa at multiple natural frequencies including those corresponding to the synodic rotation period of Jupiter (11.1 hours), the orbital period of Europa (85.2 hours), and the harmonics and beats of these two fundamental periods. Knowledge of the induced magnetic field enables retrieval of Europa’s ice shell thickness, ocean depth, and ocean conductivity—from which salinity can be estimated (Biersteker et al. 2023 ). As a secondary contribution, magnetic field measurements can be used to characterize aspects of atmospheric composition and loss, and to identify and characterize plumes, if they exist and the spacecraft flies through them.

The ECM instrument consists of three, three-axis fluxgate sensors distributed along a coilable 8.5-m-long boom that will be deployed soon after launch. In the multi-sensor design, field gradients along the boom are used to identify and remove the contribution of the spacecraft field (Cochrane et al. 2023 ). Given that ECM does not include an absolute calibration reference, intermittent in-flight calibrations will be undertaken approximately once every few encounters with Europa. By spinning the spacecraft multiple times about each of two perpendicular axes, it will be possible to retrieve any change in the relative gains, offsets, and orthogonality of all three sensors. All sensors are controlled and read out by the ECM electronics unit that is installed inside the thick-walled vault that protects it from the intense radiation of plasma trapped in Jupiter’s strong magnetic field.

ECM will collect data at 16 vector samples per second for the duration of each Europa encounter. For the remainder of each orbit, background measurements will be made at one vector sample per second. To identify the induced fields with high precision from data collected on multiple flybys of Europa, the encounters are positioned across a range of orbital phases (true anomaly) and well-distributed in Jovian System III longitude. The corotating magnetospheric plasma currents interact with Europa and its tenuous atmosphere, creating a magnetic field signature that can perturb the induced field originating from the subsurface ocean. Most of the perturbing effects of the plasma interaction will be characterized and removed using numerical models, guided by plasma properties derived from PIMS observations.

4.3.4 Plasma Instrument for Magnetic Sounding (PIMS)

The Plasma Instrument for Magnetic Sounding (PIMS) (Fig.  4 k; Westlake et al. 2023 , this collection) is a set of four Faraday cups designed to measure the plasma distributions that perturb the magnetic field near Europa. Accounting for these perturbations in the induction response of Europa is imperative for the success of the induction experiment. The plasma contributions to the magnetic field primarily vary in accordance with the co-rotating Jovian plasma density and flow velocity and are expected to exceed the induction signal in all but a few portions of some flybys. Thus, precise determination of the plasma contributions to the magnetic field is crucial for accurate characterization of the ice shell and the subsurface ocean (Kivelson et al. 2000 ).

PIMS consists of two separated sensors (PIMS Upper and PIMS Lower), each with two orthogonally oriented Faraday cups of 90° FOV, yielding a contiguous view in the plane perpendicular to the solar array long axis with only minor obstructions. PIMS will measure the ion and electron distributions of the Jovian magnetospheric and the Europa ionospheric plasma utilizing four science modes of operation: 1) “magnetospheric mode,” which is optimized for measuring the hotter plasma outside Europa’s exosphere; 2) “ionospheric mode,” which is optimized for the cool dense plasma nearest to Europa; 3) “transition mode,” which switches between the ionospheric and magnetospheric modes to ensure coverage of the transition region between Europa’s ionosphere and the Jovian plasma; and 4) “survey mode,” which is identical to the magnetospheric mode but to be operated far from Europa with a reduced data rate. In its magnetospheric mode PIMS will measure the Jovian magnetospheric ions between 50 eV and 6 keV, and the magnetospheric electrons between 50 eV and 2 keV with an energy resolution <15%. The ionospheric mode will cover ions and electrons in the energy range from 1 to 70 eV with an energy resolution of 0.3 V, while the transition mode will cover the ions and electrons in the entire PIMS energy range (−2 keV to 6 keV, where negative energies apply to electrons). To perform these measurements, PIMS sweeps the voltage applied as a characteristic waveform (DC [V] level with a superimposed sine wave [ \(\Delta \) V]) on either the high- or low-voltage modulator grids. Particles with energy-per-charge (E/q) ratios that fall between the wave height of the wave form (V \(-\Delta \) V < E/q < V+ \(\Delta \) V) then produce an AC current on the collector plate, which is measured with a high SNR.

PIMS will also measure the flow direction of the plasma utilizing its segmented collector plates located within each of the four Faraday cups to within 5° accuracy. These measurements will be crucial for translating the measured energy to flow velocity of the plasma. Limited compositional measurements of Europa’s ionosphere will be obtained by ramming into the cold ionosphere at the high velocity of the spacecraft. This will lead to well-separated peaks in the energy-per-charge of the ions and enable identification of some ion species.

4.4 Investigations Using Engineering Subsystems

4.4.1 gravity and radio science (g/rs).

The Gravity and Radio Science (G/RS) investigation (Mazarico et al. 2023 , this collection) utilizes the radio tracking signal between the Earth-based observing stations of NASA’s Deep Space Network (DSN, the ground element) and the Europa Clipper spacecraft (the flight element). The Doppler shift of the frequency of the radio signal allows navigators and radio scientists to measure the along-line-of-sight motion of the spacecraft, perturbations to its acceleration, and propagation effects.

The radio tracking measurements are collected in a ±2 h window around closest approach during each flyby of Europa. Over the full mission, the spatial coverage is nearly uniform at regional scales (>400 km). The multiple flybys tracked by radio thus provide good observability of key geophysical parameters, notably the degree-2 tidal Love number \(k_{2}\) , which relates the gravitational potential resulting from tidal deformation of Europa to the tide-raising potential (i.e., from Jupiter). In the presence of an ocean, \(k_{2}\) is expected to be on the order of 0.25 (Moore and Schubert 2000 ); however, this parameter is highly sensitive to the rigidity of the ice shell, and to ocean density as well. This ambiguity can be reduced by measuring the amplitude of the surface deformation, which is related to the tidal potential by another Love number \(h_{2}\) that can be obtained through differential range measurements acquired by REASON (Steinbrügge et al. 2018 ) at ground track intersections (termed crossovers).

In addition to the time-varying potential, Europa Clipper’s trajectory is sensitive to the static gravity field parameterized by the Stokes coefficients \(C_{lm}\) and \(S_{lm}\) (Kaula 1966 ; Park et al. 2015 ), where \(l\) and \(m\) are the spherical harmonic degree and order respectively, a measure of the wavelength of the gravitational perturbation. The degree-2 Stokes coefficients will enable determination of whether Europa is in hydrostatic equilibrium (Verma and Margot 2018 ), a state that has commonly been assumed when inferring moment of inertia from gravity data (Anderson et al. 1998 ) but is yet to be demonstrated. It is also plausible that there are shorter-wavelength (kilometers-scale height and 10s-kilometers-scale width) gravity anomalies related to the ice shell structure (such as upwelling diapirs of warm buoyant ice, or pockets of meltwater or brine) that may be detectable (Roberts et al. 2018 ; Mazarico et al. 2023 , this collection), or similar-scale seafloor topography that could be detectable (Dombard and Sessa 2019 ; Koh et al. 2022 ). The reconstructed spacecraft trajectory will provide further constraints on the Europa ephemeris and enable more accurate determination of the Laplace resonance and Jupiter system orbit evolution (Mazarico et al. 2023 , this collection).

Beyond the gravity science opportunities, the radio science investigation will conduct radio occultation observations to better characterize the ionosphere of Europa and the plasma environment in the Jupiter system (Withers 2010 ; Phipps et al. 2020 ). Distant occultations, in which the radio signal passes through the Io plasma torus, can be performed using the high-gain antenna (HGA) and will lead to development of better plasma models in the Jupiter system. During flybys, this configuration is not available because the narrow HGA FOV will be directed upward, normal to Europa’s surface. Thus, during flybys, radio occultation observations to obtain vertical profiles of ionospheric electron density will be conducted in a two-way configuration at X-band only, primarily using a subset of the spacecraft fan-beam and/or low-gain antennas for each flyby (Sect.  5 ), depending on the Earth direction with respect to the flyby geometry.

4.4.2 Radiation Science

The Radiation Monitor (RadMon) subsystem (Meitzler et al. 2023 , this collection) onboard Europa Clipper serves as an engineering resource for the mission, continually measuring the intense radiation environment of the Jovian system near Europa, as well as throughout the orbits to assess health and safety of the spacecraft. The RadMon consists of a charge rate monitor (CRM) mounted on the electronics vault and a distributed set of dosimeters, strategically placed around the spacecraft to optimize measurement of the radiation impinging on various instruments and subsystems that may be susceptible to high-energy radiation. The dosimeters will measure the total-ionizing dose (TID) of radiation the spacecraft is exposed to, which can lead to gradual degradation and or failure of semiconductor electronics, especially those which are made of dielectric materials (e.g., SiO 2 ). The dosimeters used for the mission are widely used radiation-sensitive metal-oxide-silicon field-effect transistors (RadFETs), from which TID is extrapolated through measurement of the radiation-induced threshold voltage shift of Si/SiO 2 metal-oxide-semiconductor field-effect transistors (MOSFETs) as a function of time. The CRM will measure the current generated by the incident magnetospheric electrons using a series of bulk charge collection plates and transimpedance amplifiers. Monitoring the incident electron current is important for understanding implications of spacecraft charging and potential internal electrostatic discharge (IESD) effects.

While the RadMon is primarily an engineering resource for the spacecraft, it can also provide useful insight for Jupiter system radiation science, and Europa’s role therein. The RadMon system will provide low-resolution spectra of Europa’s radiation environment in the MeV range, simply due to its construction. More specifically, the variable shielding thickness for each plate of the CRM allows four simultaneous current measurements to infer a crude four-band electron energy spectrum. The bands are roughly peaked in energy at 0.5, 2, 10, and 30 MeV. Additionally, the CRM measurements will provide near-instantaneous net charge measurements of the electron radiation environment with a 1-Hz sampling cadence, allowing radiation environment mapping along each flyby of Europa.

Augmenting data from the RadMon system, complementary and opportunistic background radiation data can be acquired by the onboard science instruments. Specifically, the Europa-UVS detector is sensitive to electrons with energy >10–15 MeV; the EIS detector is susceptible to electrons with energy >10 MeV; the MISE shielded Mercury Cadmium Telluride detector is sensitive to electrons with energy >50 MeV; and the MASPEX microchannel plate is sensitive to electrons with energy >3 MeV. The diverse radiation datasets that will be collected will aid in understanding the role that radiation has on the composition, origin, and evolution of materials on the surface of Europa, while constraining the additional observational data. Thus, the RadMon subsystem and other radiation dataset opportunities provide important engineering context while helping to address the mission’s overarching goal of assessing Europa’s habitability.

5 Flight System Overview

The spacecraft and the science payload comprise the Europa Clipper flight system, described in detail by Srinivasan et al. ( 2024 , this collection). The flight system is composed of three modules: the propulsion module, the radio frequency (RF) module, and the avionics module. The flight system and its associated coordinate system are illustrated in Fig.  5 . The propulsion module constitutes the core structure of the spacecraft and is composed of the cylindrical structure enclosing the fuel and oxidizer tanks; two solar array wings including their support structure, propulsion lines, and components; redundant sets of engines; and the propulsion module electronics, which provides all electrical interfaces for the propulsion subsystem, the solar array drive actuators, and deployment hardware. The propulsion module also accommodates the RF module, ECM, the spacecraft thermal radiator, the lower sensor of the PIMS instrument, the REASON VHF and HF antennas including cabling, and the reaction wheel units. The RF module contains most of the communications equipment, including a 3-m diameter dual-band (X and Ka) high-gain antenna (HGA), a medium-gain antenna (MGA), three fan-beam antennas (FBAs), three low-gain antennas (LGAs), and a panel hosting the transponders, amplifiers, and associated equipment. The avionics module consists of a radiation vault, a nadir-viewing platform, and secondary structures. The vault provides radiation protection and thermal interface control to internal electronics, and it provides mounting support for various external instruments and spacecraft components. It consists of aluminum panels, which reduce the effective radiation dose from Jupiter’s harsh environment. Thermal control is achieved by an actively pumped thermal fluid loop, and heat is provided by the instruments and spacecraft subsystem components.

figure 5

Europa Clipper flight system, with the solar arrays (thus REASON antennas) in the standard closest approach configuration

The Europa Clipper flight system is solar powered. The solar array is made up of two wings containing five panels each with a total area of ≈102 m 2 and a power output of 700 W at the end of mission. The solar array can be articulated about its long axis and the angular motion ranges from −185° to +165°. The photovoltaic cells are protected from radiation in the Jovian magnetosphere by a cover glass, which limits the degradation from the beginning to the end of mission to 30%. Power generated by the solar arrays is stored in three lithium-ion batteries, which are connected in parallel and provide a capacity of 365 Ah at the end of mission.

The propulsion subsystem supports attitude control, angular momentum management, and all propulsive maneuvers including trajectory correction maneuvers, Jupiter orbit insertion, and orbit trim maneuvers. It is a bipropellant system using monomethylhydrazine fuel and mixed oxides of nitrogen (3%) or nitrogen tetroxide oxidizer. The bipropellant is contained in two large, identical tanks—one for fuel and one for oxidizer—and is sized for up to 2750 kg of propellant. Thermal control is provided via a pumped fluid loop to the tanks, components, propellant and pressurant lines, and engines, and through some heaters on the pressurant lines and tanks. There are 24 engines, each capable of delivering 27.5 N of thrust. Sixteen of these engines are pointed in the −Z direction, in two sets of eight for redundancy. Maneuvers will utilize up to eight engines to provide a maximum total thrust of approximately 220 N. The thrust vector can be controlled by pulsing any of the eight engines in the primary branch. There are eight more engines (two redundant sets of four) that point in the +Y and −Y directions. These engines are configured in coupled pairs and are used for roll control.

The telecommunications system provides the link between the flight system and the ground and provides command reception, science and engineering data downlink, navigation data types including ranging, two-way Doppler, and delta-differential one-way ranging (DDOR). The system includes the 3-m fixed HGA, which supports X-band uplink and both X- and Ka-bands for downlink, with redundant traveling wave tube amplifiers at each frequency. Ka-band downlink, the primary data return path for science data, is available only on the HGA. All lower-gain antennas support only X-band communication for uplink and downlink. The three LGAs provide all-sky coverage, but their performance limits their use beyond the near-Earth environment; they will be used for some maneuver attitudes, and two are used for gravity science at Europa. During cruise in the inner solar system, communications will be heavily dependent on the FBAs, with limited use of the LGAs, MGA, and HGA. In the outer solar system, X-band uplink and Ka-band downlink will be the primary links for most of the remainder of the mission. During the Europa flybys, the gravity science experiment is enabled by serially switching between FBAs and LGAs. Downlink data rates from the HGA to a single 34-m DSN station during the tour will be up to 16 kb/s at X-band and up to 500 kb/s at Ka-band. Higher rates are possible by using multiple 34-m DSN stations. The uplink data rate will be up to 2 kb/s with the HGA. Without the HGA, the highest data rate that can be supported at Jupiter is 10 b/s on the MGA.

The science payload consisting of remote sensing and in-situ observing instruments (Sect.  4 ) is accommodated externally on the vault in nadir and ram-viewing directions, respectively, as shown in Figs.  2 and 5 . This configuration allows for simultaneous and synergistic observations of Europa’s surface, atmosphere, and space environment. Except for MISE, which is attached directly to the vault, the optical remote sensing instruments are hosted on the nadir deck, which is kinematically mounted to the vault for mechanical isolation. The in-situ instruments affixed to the vault are SUDA and MASPEX, and the Upper PIMS sensor. The Lower PIMS sensor is mounted at the bottom of the spacecraft, to complete the instrument’s total field of view in the YZ plane. The REASON VHF and HF antennas are mounted on the edges of the solar array, and the three sensors of ECM are located on an 8.5-m-long boom. The REASON antennas and the ECM boom will be deployed soon after launch.

6 Mission Design and Operations

Mission Design includes architecture and implementation of the plan for conducting the mission, starting with the launch, through the interplanetary trajectory and Jovian tour, and ultimately ending with disposal of the flight system. The concept of operations defines how the spacecraft will be flown to achieve the mission’s requirements for science and engineering needs. These are more thoroughly documented in Cangahuala et al. (this collection) and are briefly summarized here.

6.1 Mission Phases

The Europa Clipper mission concept was developed through architecture studies to find high science value missions to Europa at realistic cost, as described in Sect.  2 . Options were eventually narrowed to the multiple flyby approach of Europa Clipper. This approach, selected as a low implementation risk that retains high science value, accomplishes the science objectives of the mission via a spacecraft in Jupiter orbit carrying science instruments to observe Europa and its environment during an extended series of close Europa flybys (Buffington et al. 2017 ).

6.1.1 Launch and Cruise Phases

The baseline timeline begins with a launch from Cape Canaveral on a Mars–Earth Gravity Assist (MEGA) trajectory in October 2024, using a commercial SpaceX Falcon Heavy vehicle in fully expendable configuration. The MEGA interplanetary trajectory has a 5.25-year cruise phase, with a perihelion as low as 0.82 AU. The Mars gravity assist will occur on 28 February 2025, and the Earth Gravity Assist on 2 December 2026 (with dates applicable to a launch at the beginning of the launch period). Jupiter Orbit Insertion (JOI) occurs 11 April 2030. Cruise events are detailed in Cangahuala et al. (this collection).

6.1.2 Tour Phase

The Europa Clipper tour design (Buffington 2014 ; Buffington et al. 2017 ; Cangahuala et al. this collection) leverages four gravity assists from Ganymede to set up the first Europa flyby (E01) 11 months after JOI. Following an additional Europa flyby and two additional Ganymede flybys, the first set of resonant Europa flybys, Europa Campaign 1, begins about three months later. Europa Campaign 1 is designed primarily to survey the sun-lit anti-Jovian hemisphere of Europa and is composed of 24 Europa science flybys, most at altitudes at or below 100 km. This campaign is followed by an 8-month period of orbit shaping, utilizing Callisto and Ganymede flybys to set up Europa Campaign 2, with 23 Europa science flybys, to survey the sun-lit sub-Jovian hemisphere of Europa.

Europa Campaign 1 begins with a series of 6:1 resonance Europa-to-Europa transfers, which means Europa orbits Jupiter six times in the same amount of time that Europa Clipper orbits Jupiter once (about 21.3 days, approximately 3 weeks). The orbit cadence is then increased to 4:1 resonant transfers for Europa Campaign 2 (about 14.2 days apart, approximately 2 weeks). Beginning the first campaign with a longer cadence between flybys (6:1 resonant transfers) provides the ground team with a gentler cadence that better allows for anomaly responses in the course of executing science and engineering activities, including orbit trim maneuvers. In both cases, these highly elliptical orbits afford time for Europa science data playback while outside Jupiter’s high radiation environment, extending the lifetime of the mission and maximizing the total science return.

The mission’s radiation limit utilized for tour design is 3 Mrad total ionizing dose behind 100 mil of aluminum, as modeled from JOI to the final Europa flyby. The Europa Clipper mission concept assures “global-regional” coverage of Europa (i.e., data sets at the regional scale, distributed across Europa globally) via a complex network of flybys from Jupiter orbit. Ground tracks with corresponding altitudes for the nominal 49 planned science flybys of Europa are illustrated in Fig.  6 .

figure 6

Trajectory options for Europa Clipper are designated by the year of the tour’s development (here, 2021), an indication that the tour is for a multiple flyby mission (F), the sequential number of the developed tour family (here, 31), and the specific version of the tour (here, version 6).

6.1.3 Planetary Protection and Disposal Phase

Europa Clipper is a flyby mission to a location of significant interest for the chemical evolution or origin of life, with a chance that contamination could compromise future investigations. Thus, the mission is deemed Category III from the planetary protection perspective, limiting the probability of contamination Europa’s ocean with a single organism to 1 x 10 −4 , over a 1000 year period of concern for biological contamination (National Research National Research Council 2012 ). To address this limitation, the Europa Clipper mission adopts a probabilistic model (McCoy et al. 2021 ) that considers: spacecraft failure scenarios and the associated potential for impact onto Europa; expected geological resurfacing timescales that could carry terrestrial biological contamination to Europa’s liquid water; and assessment of biological mortality from Earth to Europa. Instead of demonstrating that the spacecraft hardware would be fully sterile, the project shows that the probability is sufficiently small that Europa Clipper inadvertently impacts Europa and delivers hardware onto a piece of the surface that resurfaces within the 1000-year period of biological exploration (McCoy et al. 2021 ; DiNicola et al. 2022 ).

Planetary protection requirements dictate that before control of the spacecraft is lost, actions must be taken to negate the probability of biological contamination of Europa that could result from flight system impact with Europa. The disposal phase of the mission ensures the permanent avoidance of Europa impact by deliberately impacting another Jovian body, nominally Ganymede. The currently planned disposal phase is the period between the End-of-Prime-Mission (EOPM) on 23 June 2034 and End-of-Mission (EOM) on 03 September 2034, where EOPM is defined as 30 days after the last targeted Europa closest approach, and EOM is defined to be the time of impact. If the science mission were to be extended through agreement with NASA, the disposal phase would be delayed.

6.2 Concept of Operations

6.2.1 templatized repeatable science observations.

A key factor in the observing strategy is the unavoidable coincidence of science observations and high radiation in the vicinity of Europa. Acquiring all the observations needed to fulfill science objectives requires several total weeks within this challenging environment, where a safe limit on total time is imposed by flight system tolerance to the accumulating radiation dose. The advantage of the multiple-flyby approach is the ability to divide this necessary exposure into many short intervals of a day or two each. These periods are then separated by 2–3 weeks on average, as determined by Europa Clipper’s orbit period around Jupiter. Routine activities such as data return, energy renewal, orbit maintenance, and calibrations may then be conducted at a more leisurely pace and without the added complication of an intense radiation environment.

Naming conventions for a typical orbit and encounter are provided in Fig.  7 . The repetitive nature of both science observations and engineering support activities is efficiently accommodated by use of templates, repeatable observations that cover specific time periods within each orbit. Observations may be coordinated among instruments, and calibrations, rolls to obtain data on fields and particles, maintenance activities, and downlink can all be accommodated with minimal uplink process iteration and risk. An example of a templatized approach to orbital activities is illustrated and described in Cangahuala et al. (this collection).

figure 7

Naming conventions for a typical orbit/encounter petal, shown for the case of a 4:1 resonant orbit. Thin black circle denotes Europa’s orbit around Jupiter (orange dot); orange oval represents a 14.2-day Europa Clipper orbit, with tick marks denoting approximate 1 day time intervals. Blue oval is used to demark portions of the Europa Clipper orbit, such that the green arc denotes approach and departure portions of the orbit, and small purple arc denotes the nadir period surrounding closest approach (C/A), when the spacecraft’s +Y axis points continuously toward Europa. Note that the orbit number increments at apojove (the point farthest from Jupiter), while the encounter number increments when the approach phase begins, at 2 days prior to C/A. During a typical encounter, the bulk of the data are collected during the nadir period, and data are played back while outside of the Jovian high-radiation environment

6.2.2 Data Downlink Plan

Compared to historical deep space missions, the Europa Clipper mission will carry a substantial amount of non-volatile data storage capability to meet its unique science and engineering data storage needs: each Europa Clipper flight computer, or Europa Compute Element (ECE), will have a redundant Bulk Data Storage (BDS) device designed to hold at least 512 Gibibits (where 1 Gibibit = 10 30 bit), or ≈550 Gb, of payload data. This is the volume required through the end of mission, after accounting for memory degradation due to radiation and other environmental factors over the expected life of the mission. Following data collection, the scheduled communication links to Earth may not support the downlink of all the collected data before the subsequent Europa flyby or flybys. As such, the BDS contains sufficient capacity to allow storage of those carryover data, until those data can be downlinked. Instrument data will be sorted into priority bins so they can be placed in the data product catalog for eventual downlink. The total data volume expected to be returned during the Jovian tour is >6 Tb.

6.3 Science Planning Process

Science planning lessons from the Cassini mission (Paczkowski et al. 2009 ) have guided the science planning strategy for Europa Clipper. The Europa Clipper Science System is responsible for developing the science strategic plan to document the high-level science objectives and priorities used by the Mission Operations System (MOS) to refine the science observation timeline. The key product of the science strategic planning process will be the Science Strategic Planning Guide (SSPG), which will document the integrated cross-discipline science priorities for each orbit throughout the mission. The SSPG will be developed prior to JOI via discipline-focused discussions and negotiations held within the Thematic Working Groups (TWGs, Sect.  7.2.1 ). Key content of the SSPG includes: science priorities for the non-nadir period of each orbit, inclusive of the period before Europa Campaign 1; science data playback priorities per encounter; integrated observation strategies; and target selection strategies and priorities. The leadership of the TWGs and the Habitability Advisory Board (HAB) will be responsible for synthesizing each TWG’s priorities into the SSPG, to develop an integrated science product. This integrated SSPG will be reviewed and concurred by the Science Leadership (Principal Investigators, Team Leaders, and TWG co-chairs; Sect.  7.2 ) prior to delivering it to the MOS. The general process flow is given in Fig.  8 a.

figure 8

Flow diagrams of the key science planning processes: a) strategic science planning process, and b) tactical science process

During Europa Tour Operations, the SSPG may need to be updated based on new Europa discoveries, lessons-learned from science data collection and analysis or from instrument-related performance changes that may require re-thinking the science strategies or the science data playback priorities. Given the latency in downlinking and interpreting science data to inform changes, the expectation is that (nominally) during this process, the science team will not be making significant changes to the overall strategic plan, and will only adjust the plan to best achieve the science requirements. The SSPG updates will likely occur once during Europa Campaign 1, once during the transition to Europa Campaign 2, and once during Europa Campaign 2.

Members of the science team also participate in tactical decision-making processes (occurring on a 4-week cadence) via the Tactical Science Group (TSG). The TSG includes representatives from the science investigation teams, TWGs, mission operations, and science team leadership, ensuring a broad range of experience and perspectives. This group is empowered to make operational decisions on behalf of the broader science team. It also advocates for science during tactical planning and serves as the primary personnel interface between the science team and the mission operations team. Each role in this group has unique responsibilities, and because most of the individuals serving on this team have external obligations, each role will have a defined rotation cadence to allow for transitions and workload balancing. Activities that require the support of the TSG (training, operational readiness tests, activity timeline updates, and tour operations) will begin approximately one year before JOI. As shown in Fig.  8 b, the main interface functions of the TSG include: reviewing and assessing all proposed science intent changes during each uplink process, providing the agreed-upon changes to MOS, and providing an out-brief of those changes to the science leadership, which will include a summary of potential implications for future flybys.

6.4 Geospatial Analysis Software

For the science team to be full participants in Europa Clipper’s concept of operations, software tools are required to conduct integrative science analysis, to permit science observation and data visualization, and to support science observation planning. Such tools will be essential interfaces to facilitate well-informed communication between the MOS and the science team. Two such tools, Cadmus and iDigit, are currently in use to aid planning. Another such tool, the Europa Geospatial Analysis Software (EGAS), will support a broad range of science data to enable integration across the investigations. Built on the framework of the Java Mission-planning and Analysis for Remote Sensing (JMARS; Christensen et al. 2009 ), EGAS will display science data, enabling multiple data sets to be analyzed together at high fidelity and promoting cross-instrument scientific analyses. It will also ingest and display select mission data such as a basic activity timeline; instrument pointing, FOVs, FORs, and footprints; geometric characteristics of the trajectory; and locations of nearby planetary bodies. EGAS will provide critical contextual information to the science team members as they are supporting and participating in mission operations, enabling strategic and tactical science decision-making and efficient communication across the science team.

6.5 Data Products and Archiving

The Europa Clipper mission will generate an abundance of scientific data products, and it is the science team’s policy that all data products be freely shared among science team members. Raw data products will be archived at the Planetary Data System (PDS) within six months, and derived products by the end of mission, for public use. The generation and validation of data products and archives, and the delivery of archives to the PDS, is overseen by the Data Archive Working Group (DAWG). Data products are categorized by processing level and comprise telemetry, raw, partially processed, calibrated, and derived data products. Telemetry and raw data contain the original data received from the instrument, whereas calibrated data products have been converted to physical units, and derived data products include processing beyond the calibrated level. Each archival data product will be defined in a software interface specification document.

The science operations will be geographically distributed, with a common data repository referred to as the Mission Data Store. The high-level flow of data through the stages of archive generation, validation, and transfer to the PDS for distribution to the science community is illustrated in Fig.  9 and is described as follows. Upon receipt of telemetry from the DSN, the MOS will generate data products up to the raw level within the mission Science Data System (mSDS) and provide these data, along with trajectory and relevant ancillary data, to the science team for scientific analyses. These data are also delivered to each investigation team’s home SDS for generation of higher-level calibrated and derived data products, and the resulting products will be returned to the Mission Data Store and forwarded as archive bundles to the PDS after they have been fully validated. The archival data products associated with instrument data will be in PDS standard version 4 (PDS4) data format and include metadata in the form of PDS4 labels (Planetary Data System 2021 ). Archival data products produced by the MOS, specifically raw data products, trajectory and engineering data, and any other relevant information, will follow the same procedures as data products designated for the science archives. All levels of data products from all investigations will be available to anyone on the science team.

figure 9

Europa Clipper data archive generation, validation, transfer, and distribution from the mission Science Data System (mSDS) of the Mission Operation System (MOS), to each Investigation Team SDS of the Science System, then to the Planetary Data System (PDS) for public distribution

Validation of science, engineering, and trajectory data follows the generation of data products and will be carried out by the generating entity. Validation of the data archive is a key requirement for the mission to ensure the integrity of scientific content. Scientific analysis of the derived products constitutes an important form of validation, as problems can be uncovered during the work. During the validation period, the data suppliers will check for and correct obvious errors in processing and missing files. Secondary validation using PDS-provided software will check for missing files, defects in the file and directory structures, compliance with PDS4 standards, and integrity of the electronic transfer of the data products. Generation and validation of products will occur within a period of six months between receipt of data and delivery to the PDS. Content validation will rely on scientists of the relevant investigation teams who will ensure integrity of the data product archives. Upon delivery of data, the PDS will conduct additional validation of the data archives and will iterate with the investigation teams to resolve issues prior to public release.

To support cooperative and synergistic science along with adaptive and efficient mission planning, collaborative data products will be shared within the full science team as they become available and will include “quick-look” products, which will be made available to the science team within two weeks. Collaborative data products are not expected to be archive-ready, but they will be suitable for the purposes of aiding scientific investigations and enabling preliminary discussion among the science team, and some (as appropriate) will ultimately be archived with the PDS. The scientific use of these data is integral to data validation and ensures that high-quality products will be delivered to the public.

In coordination with cognizant science team members, some communications data products will be derived from collaborative data products for purposes of public outreach and media releases. These products are intended for rapid dissemination of new and significant information by the project’s communication team to the public, and they include images, derived data products, and other forms of data that illustrate new results that are likely to be of high public interest. Public distribution of data includes news media events, digital and social media dissemination, and distribution of written materials concerning mission operations and/or scientific analyses.

Standard data products form the core of the archives that will be produced by the Europa Clipper project, investigation teams, and participating scientists, and they will be delivered to the PDS for distribution to the science community. These products and related documentation (software interface specification, user guides, and tutorials) will be validated prior to transfer to the PDS. Engineering data relevant to the interpretation of science data and required for processing raw data into higher-level data products will also be archived. In some cases, these data may be aggregated with science data products rather than forming dedicated products on their own. The generated archive bundles will be delivered by the respective producers to the Mission Data Store and the PDS. Once transferred to the PDS, the Europa Clipper archives will be available online through the PDS archive interface. Newer versions of products may replace older versions over time. The PDS will provide a capability for the user to be able to search for and retrieve digital data that meet criteria requested by the user, such as specific target body, location on the body, instrument, and times of coordinated observations; map-based searches will also be supported.

7 Science Team Structure and Philosophy

7.1 “one team” philosophy.

To understand whether Europa is habitable, we need to disentangle the complex and interrelated processes that reveal whether this moon possesses the “ingredients” for life. We need to know the location and properties of liquid water, including its relationship to tidal heating, the movement of melt, and the composition of brines. Information on whether Europa’s chemical-physical environments are suitable for life can be inferred from detailed measurements of the surface and tenuous atmosphere, including remote and in-situ measurements of the surface, gases, particles, and plasma. To understand whether Europa’s ocean has the chemical sources of energy to support life requires knowledge of the geological, geochemical, and radiolytic processes that affect composition and abundance of oxidants and reductants in potentially habitable niches. To discern Europa’s secrets, synthesis of phenomena and processes is key.

Each of Europa Clipper’s instruments will be used to interrogate Europa and its environs, and with each we will find critical clues about how that planetary body works. However, it is in combining and assessing the details, limitations, and datasets from each instrument that we can gain collective clarity into the multi-disciplinary mysteries of Europa. To achieve the mission’s goal of exploring Europa to understand its habitability, then, we must step beyond the comfort zone of our own specific scientific disciplines and work across instrument realms, to celebrate and engage the expertise of the full Europa Clipper science team, and beyond. As is common in science, it is at the overlapping boundaries of sub-fields that the greatest insights and discoveries are derived: diverse and interdependent teams result in innovative and groundbreaking science (Balakrishnan et al. 2011 ; Uzzi et al. 2013 ; Foster et al. 2015 ).

Integrated science cannot be achieved post hoc , as an afterthought, but instead requires forethought and planning as to how the science team itself is organized and interacts. Synergies among instrumentation and investigators must be built into the organization and social fabric of the team, to best enable multi-disciplinary investigations (Vertesi 2020a ). Balakrishnan et al. ( 2011 ) describe that teams may be co-acting, coordinating, or integrated, with such integration best beginning at a project’s inception. Therefore, from the start, the Europa Clipper science team has adopted a “one team” philosophy, promoting visibility and interdependence across the science team, regardless of members’ instrumental or disciplinary affiliation. This requires understanding and sharing each other’s processes, techniques, data sets, analyses, caveats, and results (Shrum et al. 2007 ; Vertesi and Dourish 2011 ; Vertesi 2020a ). Visibility and interdependence bring trust, promote partnerships, inspire group identity, and enhance the interpersonal relationships essential to team support (Durkheim 1893 ; Vertesi 2020a ). Visibility and interdependence provide fertile ground for the development of joint investigations, data-sharing arrangements, and interdisciplinary science. These values also provide holistic solutions to problems that could arise; for example, if a Europa Clipper investigation is at risk of not achieving its contribution to a science objective, the science team (e.g., via the TSG) will be readily motivated to provide resources to ensure success for the at-risk technique’s contribution to the science objective.

Promoting visibility and interdependence across the Europa Clipper science team is accomplished in many ways, including:

Working and focus groups that are open to all science team members, and which are fluid in membership and participation;

Mailing lists and newsletters shared across the science team;

Meeting formats that promote sharing of information, ideas, and plans;

Shared software that displays observation plans and what-if “sandbox” scenarios;

Shared software that promotes comparative analysis and synthesis of datasets;

Team collaboration websites that provide for information sharing;

Strategic planning that involves the whole science team via the TWGs in developing initial estimates of how spacecraft resources (observation time, BDS space, and downlink) will be utilized; thereafter, the TSG (which includes representatives of each Investigation team and each TWG) will decide how to use resources tactically, instead of instrument teams being assigned individual allocations a priori ;

“Quick-look” and other collaborative datasets shared across the full science team;

Common “data store” where any team member can access any raw or processed dataset;

Shared analysis tools to view collaborative and integrated science datasets;

Shared measures of forecasted performance against science requirements and flight system consumables;

Publication policies that promote sharing of paper outlines and drafts across the science team, along with calls for contributions from potential co-authors;

Meeting rituals such as social events, journal clubs, award ceremonies, informal gatherings, and a monolith mascot, that connect scientists across sub-teams.

The Europa Clipper science team’s Rules of the Road (Europa Clipper Science Team 2022 ) provides team policies on data sharing, publications, professional code of conduct, and science team responsibilities. This document is intended to provide open, transparent, and equitable operating rules for the Europa Clipper science team for the duration of the project, to enable strong working relationships and to ensure that the highest quality science is delivered from the project. All Europa Clipper science team members are required to abide by and uphold the policies and practices described in that document.

7.2 Science Team Structure

The foundational membership of the science team was established with NASA’s selection of the nine individual investigation teams, upon instrument selection in May 2015. The Gravity and Radio Science team members were selected later, in July 2020. Science team onramps include nomination and approval of team affiliates (professional, post-doctorate, and graduate student—the latter two categories during the limited time of their related work), and limited nomination of new Co-Investigators, generally replacing Co-Investigators who have left the team or those who have entered Emeritus Co-Investigator status with a relatively low level of activity. Furthermore, it is anticipated that NASA Headquarters will add participating scientists for the mission near the time of Jupiter Orbit Insertion, permitting them to be trained and ready in time for the first Europa encounter. Onramps and offramps for participation are extremely valuable to ensuring a vibrant and active science team, with ability to evolve over the long timescale of the mission.

The Europa Clipper science team adopts a hybrid flat-hierarchical organizational structure (Fig.  10 ), to promote team integration and for broad participation with a variety of voices heard (Turco 2016 ; Vertesi 2020a ). At the same time, an embedded hierarchical structure facilitates management and communication pathways. Examples of hierarchical structure within the team are the structure of the Project Science Group (PSG), chaired by the Project Scientist and with the NASA Program Scientist as vice-chair; a Science Manager, who manages contracts and logistics associated with the PIs and other science investigators, and facilitates training and programmatic logistics for the PSG; investigation teams, managed by a Principal Investigator (PI) for the competitively selected science investigation teams or by a Team Leader (TL) for scientists working with facility-provided hardware; and Thematic Working Groups and Focus Groups, described next. While these groups are hierarchical in having distinct leadership, they are also relatively flat in promoting broad science team participation and interdependence, and the Working and Focus Groups feature rotating leadership positions.

figure 10

Roles and relationships among the Europa Clipper Science Team members and associated participants. Colors assist in distinguishing groupings, and solid lines designate the primary communication pathways

7.2.1 Thematic Working Groups (TWGs)

Under the one team philosophy, the Europa Clipper science team members work together to address the goal and objectives of the Europa Clipper mission through TWGs covering the areas of habitability, interior, composition, and geology. The TWGs are designed to provide high-level, cross-instrument and cross-discipline science objective-driven perspectives that ensure the goal and objectives of the Europa Clipper mission are met, and that the highest quality integrated science is achieved. The TWGs include one goal-focused group, and three science objective groups.

The Habitability Assessment Board (HAB) considers the primary mission goal: explore Europa to investigate its habitability. The HAB is a plenary body, with a rotating leadership composed of three co-chairs with broad expertise nominated by the full science team, and each member of the Europa Clipper science team is considered a member of the HAB group given that each individual team member contributes to the habitability goal. The HAB group considers how each of the individual investigations contribute to our understanding of Europa’s habitability, as well as how meeting each of the science objectives will create an integrated understanding of the body as a potentially habitable system. The HAB is additionally responsible for mediating inter-objective discussions, and synthesizing reports and recommendations across the objective TWGs. During the prime mission, HAB will be responsible for considering and adjudicating interests among the objective TWGs.

Each objective TWG is charged with providing a broadly integrated science perspective to help ensure that the Europa Clipper mission can meet its objectives, and that the highest quality integrated science is achieved. Objective TWGs have two rotating co-chairs nominated by the groups and one facilitator provided by the project. The Interior Working Group considers the mission objective to characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface–ice–ocean exchange. The Composition Working Group considers the mission objective to understand Europa’s ocean through composition and chemistry. Finally, the Geology Working Group considers the mission objective to understand the formation of surface features, including sites of recent or current activity, and to characterize high science interest localities.

7.2.2 Focus Groups (FGs)

In addition to the TWGs, Focus Groups (FGs) are periodically formed to gather information on specific cross-cutting topics, and to study and discuss science guidelines, policies, and trades as they affect the scientific success of the mission. Each FG must establish a specific task requiring expertise from multiple TWGs and is supported by the Project Scientist and TWG co-chairs. Each FG advocates for its specific charter through the relevant TWGs. In mission phases A–D, the FGs considered the interdisciplinary science related to plumes, radiation, geodesy, and reconnaissance. FGs have a rotating leadership consisting of one or two co-chairs nominated by the individual FGs, as well as a facilitator provided by the project.

7.3 Efforts Toward Equity, Diversity, Inclusivity, and Accessibility

The Europa Clipper science team is committed to improving equity, diversity, inclusion, and accessibility (EDIA), and is encouraging of team cohesion in scope, priorities, and contributions within the “one team” philosophy (Sect.  7.1 ). It is well recognized in social science literature that the sciences have a poor track record when it comes to the representation of women, minorities, and marginalized groups (Smith-Doerr et al. 2017 ; Nielsen et al. 2018 ). Central to Europa Clipper’s science team efforts is an understanding that the team needs to look critically at EDIA best practices and outcomes, and to continually improve, in areas where most needed. To improve the working environment, engage with a broader swath of the community, and maximize the mission’s overall science return, the Europa Clipper science team pursues ways to provide a diverse and equitable environment. Ultimately, an important aspirational goal for Europa Clipper is a more inclusive team that looks like the United States as a whole. Toward this end, we recognize a need to continually strive to include voices from members of traditionally underrecognized groups (Rathbun et al. 2020 ).

7.3.1 Code of Conduct

The Europa Clipper science team is the first NASA planetary mission team to have a code of conduct (Diniega et al. 2020 )—a statement written with an aim to foster a safer and more equitable environment by protecting the physical, mental, and emotional safety of all participants. Inclusion of this policy within its Rules of the Road is important for transparency, across the breadth of the Europa Clipper team and the mission’s long lifetime of more than a decade, with many changes to team membership anticipated. A key focus of the code of conduct is to emphasize not only respectful behavior across all team interactions, but also active work toward an equitable culture.

This code of conduct has been evaluated, discussed, and revised several times since formation of the Europa Clipper science team. As the team’s explicit and implicit norms, demographics, and experience change, it is important that this policy be updated to reflect current best practices and enable effective and fair interactions throughout the team. It is expected that this document will continue to be revised throughout the mission’s lifetime.

7.3.2 Science Team Meeting Initiatives

The Europa Clipper science team, like most modern large planetary mission teams, is widely distributed; thus, many communications and decisions need to be made via remote interactions (commonly with distributed groups collocated). Meeting types include regular seminars, status updates, and discussion meetings on weekly and monthly cadences. The Europa Clipper’s Project Science Group (PSG) meeting is the largest meeting type, where the full science team meets at least annually for several days to come to a common level of understanding on topics including project development status and mission science options. These PSG meetings encourage networking within the team and across investigations.

Each PSG meeting agenda includes time to develop group and individual practices leading to better team connection and interaction. At several PSG meetings, bystander intervention training has been offered to all team members and required of PIs and TLs. Bystander intervention training encourages all participants to be proactive about noticing potential or actual harm and, when able, to intervene during or after such an event (Bennett et al. 2023 ). At each PSG meeting, the team strives to invite one or more social science experts to speak with the team on topics relevant to diversity, equity, and inclusion.

To facilitate discussion and engagement while broadening access, the science team has worked on normalizing practices to help people with a wide range of communication and thinking styles to contribute. This includes advanced posting of agendas so people can take the time they need to prepare for discussion and having multiple platforms for contribution (speaking aloud, writing into chat, and posting questions anonymously). Accessibility initiatives include use of color schemes that are distinguishable to those with color disability, and early adoption of auto-generated captioning for remote meetings.

Given the broad physical distribution of the science team, Europa Clipper project was an early adopter of remote technologies, including the use of cameras and remote audio at meetings. During 2017 and 2018, given limited funding for standalone meetings, the science team experimented with hybrid-format meetings appended to scientific conferences, allowing the team to practice remote meeting strategies, ahead of the unanticipated COVID-19 lockdown. In response to COVID-19 protocols, the Europa Clipper science team further invested in creating effective and remote experiences. Notable efforts include the use of software for gathering questions anonymously and with up-voting capabilities and for pursuing synchronous or asynchronous “side” conversations within meetings. Key to these efforts was incorporation of explicit statements and practices that emphasize deliberate consideration of team structure and interactions, to promote equity and inclusion. New meeting social norms include methods to help team members break into discussions, and employing a dedicated moderator to help with communication issues and guide discussion (Diniega et al. 2019 ).

A common issue with long-duration flagship missions is the immobility of the science team: once selected, newcomers to the field have limited opportunities for career mobility. Therefore, Europa Clipper inaugurated a team affiliate member status for graduate student and postdoctoral researchers for the duration of their mentorship, to formalize their association with the mission and promote potential future mission participation. These and other affiliation statuses are indicated in the Rules of the Road document, each supporting full team membership in the “one team,” with associated rights and responsibilities.

To reach beyond current team members and build toward a more equitable community in general, the Europa Clipper science team was an early adopter of the NASA Here-to-Observe (H2O) program, to provide undergraduates at minority-serving institutions the opportunity to attend a mission science team meeting (Smith 2022 ). This has the benefit of introducing these undergraduate “Observers” to mission development and operation and make them aware of possible associated career paths. Observers chosen by NASA were paired with mentors from the science team who served as their primary point of contact for questions during PSG meetings. The program has been very well-received by both program participants and PSG members and has served to improve and augment the NASA H2O program.

Following each PSG meeting, anonymous surveys solicit feedback on meeting engagement and productivity. These surveys also assess whether meeting structure and content helped generate the desired “one team” aim, and lessons learned are applied to future Europa Clipper meetings. As PSG meetings transitioned back from fully remote to including a substantial in-person component, organizers have maintained the accessibility improvements brought by strong remote participation (Persaud and Armstrong 2020 ) by conducting meetings in hybrid mode.

7.3.3 Grassroots Team Initiatives

While engagement and direction from Europa Clipper project science leadership has been fundamental in keeping EDIA considerations at the forefront of team activities, work and organization within the team also has been critical for gathering a diversity of ideas, perspectives, concerns, and solution options. Through grassroots efforts, the Europa Clipper team has initiated three groups for focused EDIA and team dynamics discussions: (1) a traditional journal club focused on social science literature (Diniega et al. 2019 ); (2) a “sunrise group” for discussions among members who self-identify to be in the sunrise years of their careers (Leonard et al. 2024 ); and (3) an EDIA-focused mailing list for sharing concerns, ideas for team action, and gathering of suggestions for information sources or new practices. These groups are each opt-in, with clearly defined goals, and organized by a few team members. Ideas from these groups provide potential topics for discussion within the full science team, for example elevating a speaker to the Europa Clipper seminar series or for discussion at a PSG meeting. Many Europa Clipper science team members have also been heavily involved in community EDIA efforts, for example leading white papers and professional meetings on relevant topics.

7.3.4 Leadership Opportunities

Rotation of leadership within the Europa Clipper science team is a key means of growing and strengthening the team through its full lifetime, enabling a mix of building from experience, bringing in fresh ideas, and providing training opportunities. Additionally, as one of only a few large, strategic NASA missions, Europa Clipper team membership presents a unique opportunity for career and science leadership growth. In particular, the TWG and FG co-chairs serve for limited terms (∼2–3 years and/or through ∼4 PSG meetings). TWG co-chairs rotate every several years to enable “role distance”: the separation of a position from person who inhabits it (Goffman 1961 ). These positions are open to anyone on the science team, including early career scientists. As practical, TWG co-chairs include a senior scientist and an early career scientist, providing opportunities for emerging scientists to take on a mission leadership role and to work with a mentor, while supporting mobility in their career path. These leadership roles can include coordinating science efforts, leading trajectory assessments, and evaluating and participating in observation planning. These co-chairs also participate in science leadership discussions with the Project Scientist, Project Manager, investigation PIs, and NASA Headquarters representatives. Nominations for these positions are made by the science team, and selection of these chairs is made by the Project Scientist in consultation with science leadership. The selection process considers individual expertise and diversity of demographics, institutions, and career levels across the science leadership group.

7.3.5 Mission Sociologist

Beginning in 2009 during the science definition phase, the Europa Clipper team has engaged a mission sociologist, Dr. Janet Vertesi of Princeton University—expert in the interrelation between science, technology, and society—who provided valuable perspectives on human factors that affect mission teams. Vertesi had previously performed embedded ethnographic studies of the Mars Exploration Rover and Cassini mission teams. While simultaneously studying the Europa mission in its early stages (Vertesi 2019 , 2020b ), Vertesi provided mission leaders and team members with observations from other missions and sociological literature as context for shaping the Europa Clipper team structure. This included emphasis on data production context as influencing how data are ultimately valued and shared (Vertesi and Dourish 2011 ), technologies and best practices for communication and collaboration among members of a distributed team (Swezey and Vertesi 2019 ), and how the degree of team integration affects scientific outcomes (Balakrishnan et al. 2011 ). Notably, Vertesi provided perspectives on how team structure and desired science outcome are related, given the premises that team “personality” is established early in mission development and team structure is critical in shaping scientific outcomes (Vertesi 2020a ).

8 Coordination with Earth-Based Telescopes and Other Missions

Europa Clipper builds on a foundation of past observations and missions (Sect.  1.1 ) as well as ongoing and future observations and missions. Here we briefly note coordination with ground-based and space-based telescopes, NASA’s Jupiter-orbiting Juno mission, and the ESA JUICE mission.

8.1 Ground-Based and Space-Based Telescopes

Ground-based and Earth-orbiting spacecraft will provide valuable observations of Europa to enhance and extend the data from Europa Clipper’s flybys. Extended temporal coverage, the acquisition of data at additional wavelengths and at multiple locations in the solar wind or in Jupiter’s magnetosphere, expanded viewing geometries, spatial context for Europa and its environment, monitoring, and follow-up of activity or of specific regions of interest all represent beneficial augmentations to the scientific value of the mission. Other missions, including Rosetta and Juno, have effectively managed ground-based observing teams to provide increased scientific value (Snodgrass et al. 2017 ; Orton et al. 2021 ). Finally, the mining of historical data can extend the temporal baseline of observations substantially, especially for the outer planets where seasonal changes may take place over decades (e.g., Hickes et al. 2022 ). Moreover, extended temporal depictions of possible geologic changes can provide insights into geophysical processes.

Historical observations of Europa have already yielded tantalizing evidence of possible plume activity on its surface even earlier than those detected by the space-based Hubble Space Telescope (HST). Observing at NASA’s Infrared Telescope Facility on Mauna Kea, Tittemore and Sinton ( 1989 ) found that a definite measurement in the M filter (4.7 μm) was anomalous:

“[ \(T\) ] his measurement, which yields a fourfold increase in the observed flux over any other measurement, is unassailable .... [ \(T\) ] here seems no possibility of misidentification. A total of 25 pairs of integrations were made that were mutually consistent ... and there seems no possibility of error in these parameters .”

HST continues to provide important data on Europa, from compositional mapping of its surface in the visible and ultraviolet wavelengths (e.g., Trumbo et al. 2019 ), to the detection of water vapor in the space environment near Europa (Roth et al. 2014 ; Sparks et al. 2016 , 2017 ). Continued Earth-based observations of the moon prior to, during, and following the Europa Clipper mission will provide a broader context in which to interpret data returned by the spacecraft. Remote observations will provide greater temporal, spatial, and multi-wavelength coverage of Europa during the mission lifetime.

The James Webb Space Telescope (JWST) has great sensitivity in the mid-infrared wavelengths between 5–15 μm (Norwood et al. 2016 ). Early results revealing concentrations of carbon dioxide on Europa but no currently detectable plumes (Trumbo and Brown 2023 ; Villanueva et al. 2023 ) demonstrates the great potential of JWST for monitoring Europa. The Atacama Large Millimeter Array, with its continued upgrades, can provide thermal emission maps at radio wavelengths (Trumbo et al. 2018 ). Other extremely large ground-based telescopes, notably the Giant Magellan Telescope (Fanson et al. 2020 ) and the European Extremely Large Telescope (Ramsay et al. 2020 ), are due to become operational by Europa Clipper’s JOI and will have several times higher sensitivity and greater spatial resolution than currently operating 8–10-m-class telescopes. Simultaneous observing of Europa by these facilities and Europa Clipper will enhance the science return of the mission.

The Europa Clipper mission has also established a ground-based observing team to work closely with the science team on follow-up and contextual observations with Earth-based assets. This team will be especially important in providing extended temporal coverage if telescopic observations are able to confirm current activity on Europa.

8.2 Juno Mission

NASA’s New Frontiers class Juno mission entered a polar orbit around Jupiter in July 2016, from which it has characterized the giant planet’s composition, gravitational field, magnetic field, and polar magnetosphere (Bolton et al. 2017 ). While in the Jupiter system, Juno executed multiple serendipitous observations of Europa, including infrared observations of composition and temperature by the Jovian InfraRed Auroral Mapper (JIRAM) (Filacchione et al. 2019 ) and the first in-situ measurements of electrons in Europa’s auroral footprint using a multi-instrument approach (Allegrini et al. 2020 ). In its extended mission, the Juno mission adopted three satellite science objectives relevant to Europa that include investigations of satellite-magnetosphere interactions, characterizing the upper 10 km of planetary ice shells, and surface sputtering effects and atmosphere interactions. Beginning with a flyby of Ganymede in June 2021, Juno’s extended mission included a single 355 km altitude flyby of Europa in September of 2022. Juno observations of Europa included ≥1.2 km per pixel visible images of the equatorial leading hemisphere, sparse thermal and compositional spectrometry, passive microwave radiometry, and measurements of the magnetic field and space environment (NASA 2021 ). The ground tracks of this flyby transect several of those of Europa Clipper’s planned flybys, enabling additional opportunities to seek evidence for change on the surface of Europa over decade-timescales.

8.3 JUpiter ICy Moons Explorer (JUICE) Mission

The ESA JUICE spacecraft launched in April 2023 and it will arrive in Jupiter orbit in 2031. JUICE will examine the Jupiter system and the icy Galilean satellites with emphasis on Ganymede and its habitability (Grasset et al. 2013 ). JUICE will make 35 total flybys of Ganymede, Europa, and Callisto before entering into orbit about Ganymede for at least one year. As a comparable flagship mission, JUICE hosts an array of investigations that are highly complementary to those of Europa Clipper. JUICE’s two flybys of Europa will be over the antijovian hemisphere, with closest approaches of altitudes ∼400 km (Grasset et al. 2013 ; Witasse and The JUICE Teams 2020 ). These encounters will provide added data along ground tracks from the equator to about 50° north and south for the two respective flybys.

The two missions’ science teams have partnered to form a JUICE–Clipper Steering Committee (Bunce et al. 2023 ), which is composed of a diverse group of scientists from both the JUICE and Europa Clipper science teams. This committee is tasked to identify scientific experiments that could be uniquely accomplished or significantly enhanced by having two spacecraft in the Jupiter system simultaneously. For example, there currently exist two opportunities where the spacecraft are near Europa within 0.5 R J of one another and only a few hours apart. Scientific opportunities may fall into one or more categories: (1) time dependent, in which both spacecraft would need to acquire data at same time or one spacecraft’s observations would inform the other’s; (2) geometry dependent, in which each spacecraft acquires data from different parts of the Jovian system, or both observe the same target with similar or different viewing geometries; and (3) an increase in science data return, e.g., extending temporal, spatial, or wavelength coverage made possible by the availability of different instrument types or data collection opportunities on the two spacecraft, as well as cross-calibration between comparable instruments of the Europa Clipper and JUICE payloads.

9 Conclusions and Outlook

The Europa Clipper mission promises paradigm-altering science. As the first mission fully dedicated to an outer planet satellite, it will acquire unprecedented knowledge of icy satellite physical processes such as: electromagnetic induction, tidal heating, convection, cryovolcanism, tectonism, mass wasting, impact cratering, sublimation, radiolysis, sputtering, ionization, and airglow. Even more significant, Europa Clipper will assess Europa’s habitability through interrogation of the satellite’s interior, composition, and geology, including any current activity. Its objectives and scope are directly responsive to the 2011 planetary science decadal survey (National Research Council 2011 ), building on decades of iterative refinement. The instrument suite is extremely capable, poised for both hypothesis testing and discovery. The flight system is designed for synergistic science, enabling nominal observations by all instruments simultaneously. From Jupiter orbit, Europa Clipper will swoop past Europa nearly 50 times at altitudes typically 25–100 km, achieving regional coverage that is near-globally distributed, along with high-resolution sampling.

Human factors have been considered concurrently with designs of the flight system and mission system, promoting observational synergies. A “one team” philosophy promotes visibility across the full science team, and corresponding cross-instrument and cross-disciplinary interdependence to best understand Europa’s interrelated physical phenomena and fully address Europa Clipper’s top-level science objectives. Such interdependence will bring great opportunity for scientific advancement and discovery.

The Europa Clipper science team strives to achieve a standard of excellence on issues of EDIA, with acknowledgement of goals that are aspirational. The team’s Rules of the Road can serve as a model that could be tailored for other large missions with objectives that call for interdependent interactions. Europa Clipper’s organizational structure can feed forward to future outer solar system missions, and its scientific results are expected to form the basis for further spacecraft exploration, such as a mission to search for biosignatures via a potential future Europa lander.

The originally selected magnetometer was the Interior Characterization of Europa using Magnetometry (ICEMAG), which would have included two fluxgate and two scalar/vector helium magnetometers; this investigation was terminated by NASA in March 2019, and replaced with the Europa Clipper Magnetometer (ECM) as a project-provided magnetometer instrument.

Abbreviations

Airglow Port

Bulk Data Storage

Closest Approach

Carbon, Hydrogen, Nitrogen, Oxygen, Phosphorus, Sulfur

Charge Rate Monitor

Data Archive Working Group

Delta-Differential One-way Ranging

Deep Space Network

Digital Terrain Model

Europa Compute Element

Europa Clipper Magnetometer

Equity, Diversity, Inclusion, and Accessibility

Europa Imaging System

Europa Jupiter System Mission

End-of-Mission

End-of-Prime-Mission

European Space Agency

Europa Thermal Emission Imaging System

Europa Ultraviolet Spectrograph

Fan-Beam Antenna

Field of Regard

Field of View

Geographic Information System

Gravity and Radio Science

Here-to-Observe

Habitability Assessment Board

High Frequency

High-Gain Antenna

High-spatial-resolution Port

Hubble Space Telescope

Internal Electrostatic Discharge

Instantaneous Field of View

Jupiter Europa Orbiter

Jupiter Icy Moons Orbiter

Jupiter Orbit Insertion

Jet Propulsion Laboratory

JUpiter ICy moon Explorer

Low-Gain Antenna

MAss Spectrometer for Planetary EXploration – Europa

Microchannel Plate

Mars-Earth Gravity Assist

Medium-Gain Antenna

Mapping Imaging Spectrometer for Europa

Mission Operations System

Metal-Oxide-Semiconductor Field-Effect Transistor

mission Science Data System

Measurement-domain Science Traceability and Alignment Framework

Narrow Angle Camera

National Aeronautics and Space Administration

Near Infrared Mapping Spectrometer

Planetary Data System

Planetary Data System standard version 4

Principal Investigator

Plasma Instrument for Magnetic Sounding

Project Science Group

Project-domain Science Traceability and Alignment Framework

Radiation-sensitive Field-Effect Transistors

Radiation Monitor

Europa Radii

Radar for Europa Assessment and Sounding: Ocean to Near-surface

Radio Frequency

Science Data System

Science Definition Team

Signal-to-Noise Ratio

Science Strategic Planning Guide

SUrface Dust Analyzer

Time Delay Integration

Team Leader

Time-of-Flight

Thematic Working Group

Ultraviolet

Very High Frequency

Wide Angle Camera

Alexander C, Carlson R, Consolmagno G, Greeley R, Morrison D (2009) The exploration history of Europa. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 3–26

Google Scholar  

Allegrini F, Gladstone GR, Hue V, Clark G et al. (2020) First report of electron measurements during a Europa footprint tail crossing by Juno. Geophys Res Lett 47(18):e2020GL089732. https://doi.org/10.1029/2020GL089732

Article   ADS   Google Scholar  

Anderson JD, Schubert G, Jacobson RA, Lau EL, Moore WB, Sjogren WL (1998) Europa’s differentiated internal structure: inferences from four Galileo encounters. Science 281(5385):2019–2022. https://doi.org/10.1126/science.281.5385.2019

Archinal BA, Acton CH, A’Hearn MF et al. (2018) Report of the IAU working group on cartographic coordinates and rotational elements: 2015. Celest Mech Dyn Astron 130:22. https://doi.org/10.1007/s10569-017-9805-5

Article   ADS   MathSciNet   Google Scholar  

Balakrishnan AD, Kiesler S, Cummings JN, Zadeh R (2011) Research team integration: what it is and why it matters. In: Proceedings of the ACM 2011 conference on computer supported cooperative work, pp 523–532. https://doi.org/10.1145/1958824.1958905

Chapter   Google Scholar  

Baross JA, Hoffman SE (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig Life Evol Biosph 15:327–345

Article   Google Scholar  

Barr AC, Showman AP (2009) Heat transfer in Europa’s icy shell. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, p 452

Becker T et al (2024) Exploring the composition of Europa with the upcoming Europa Clipper Mission. Space Sci Rev 220. https://doi.org/10.1007/s11214-024-01069-y

Běhounková M, Tobie G, Choblet G, Kervazo M, Melwani Daswani M, Dumoulin C, Vance SD (2021) Tidally induced magmatic pulses on the oceanic floor of Jupiter’s moon Europa. Geophys Res Lett 48(3):e2020GL090077. https://doi.org/10.1029/2020GL090077

Bennett KA, Garcia P, Keszthelyi L (2023) USGS STEP UP! Employee empowerment strategies: a bystander intervention program for the planetary science community. In: LPI contributions, vol 2806

Bierhaus EB, Zahnle K, Chapman CR (2009) Europa’s crater distributions and surface ages. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 161–180

Biersteker JB, Weiss BP, Cochrane CJ, Harris CD, Jia X, Khurana KK, Liu J, Murphy N, Raymond CA (2023) Revealing the interior structure of icy moons with a Bayesian approach to magnetic induction measurements. Planet Sci J 4:62. https://doi.org/10.3847/PSJ/acc331

Blaney DL et al (2024) The mapping imaging spectrometer for Europa (MISE). Space Sci Rev 220

Blankenship DD et al. (2024) Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). Space Sci Rev 220

Bolton SJ et al. (2017) The Juno mission. Space Sci Rev 213(1):5–37. https://doi.org/10.1007/s11214-017-0429-6

Brockwell TG, Meech KJ, Pickens K, Waite JH, Miller G, Roberts J, Lunine JI, Wilson P (2016) The mass spectrometer for planetary exploration (MASPEX). In: IEEE Aerospace Conference, pp 1–17. https://doi.org/10.1109/AERO.2016.7500777

Brown DW (2021) The mission: a true story. Custom House, New York

Buffington B (2014) Trajectory design concept for the proposed Europa Clipper Mission. In: AIAA/AAS astrodynamics specialist conference 2014, p 4105. https://doi.org/10.2514/6.2014-4105

Buffington B, Lam T, Campagnola S, Ludwinski J, Ferguson E, Bradley B, Scott C, Ozimek M, Chalk AH, Siddique F (2017) Evolution of trajectory design requirements on NASA’s planned Europa Clipper Mission. In: 68th International Astronautical Congress (IAC), pp 25–29

Bunce EL, Prockter M, Choukroun MN, The JUICE-Clipper Steering Committee (2023) Exploring the origins and habitability of the Galilean Moons through unique joint JUICE and Europa Clipper observations. In: Workshop on the origins and habitability of the Galilean Moons, aix-en-provence, France, pp 24–26

Byrne PL et al. (2024) Likely little to no geological activity on the Europan seafloor. In: 55th Annual Lunar and Planetary Science Conference. Abstract #2780

Cangahuala LA et al (2024) Europa Clipper Mission design. Space Sci Rev 220

Carlson RW, Calvin WM, Dalton JB, Hansen GB, Hudson RL, Johnson RE, McCord TB, Moore MH (2009) Europa’s surface composition. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 283–327

Cassen PM, Peale SJ, Reynolds RT, Morrison D (1982) Structure and thermal evolution of the Galilean satellites. In: Morrison D (ed) Satellites of Jupiter. University of Arizona Press, Tucson, pp 93–128

Christensen PR, Engle E, Anwar S, Dickenshied S, Noss D, Gorelick N, Weiss-Malik M (2009) JMARS–a planetary GIS. In: AGU Fall Meeting, 2009 December, abstract IN22A-06

Christensen PR et al (2024) The Europa Thermal Emission Imaging System (E-THEMIS) investigation for the Europa Clipper Mission. Space Sci Rev 220

Cochrane CJ, Murphy N, Raymond CA et al. (2023) Magnetic field modeling and visualization of the Europa Clipper spacecraft. Space Sci Rev 219:34. https://doi.org/10.1007/s11214-023-00974-y

Collins G, Nimmo F (2009) Chaotic terrain on Europa. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 259–281

Daubar I et al. (2024) Planned geological investigations of the Europa Clipper Mission. Space Sci Rev 220:18. https://doi.org/10.1007/s11214-023-01036-z

Davis MW, Siegmund OH, Gladstone GR, Martin A, Retherford KD, Vallerga JV (2021) TRL6 testing of a curved borosilicate glass microchannel plate far-UV detector assembly for spaceflight. In: UV, X-ray, and gamma-ray space instrumentation for astronomy XXII, SPIE, vol 11821, pp 101–116. https://doi.org/10.1117/12.2594177

DiNicola M, Howell SM, McCoy K, Burgoyne H, Hasnain Z, Reinholtz K, Fleischer S (2022) Resurfacing: an approach to planetary protection for geologically active ocean worlds. Planet Sci J 3:108. https://doi.org/10.3847/PSJ/ac642d

Diniega S, Klima R, Phillips CB, Richey C, Turtle E, Vance SD, Vertesi J, Pappalardo R (2019) Learning ways to improve collaboration and communication within a distributed, large team – via the Europa Clipper Mission social science journal club. In: 50th LPSC, 2019 March, abstract 2132, p 2170

Diniega S, Castillo-Rogez J, Daubar I, Filiberto J, Goudge T, Lynch K, Rutledge A, Rathbun J, Scully J, Smith R, Richey C, Tai Udovicic C, Villarreal M (2020) Ensuring a safe and equitable workspace: the importance and feasibility of a Code of Conduct, along with clear policies regarding authorship and team membership. WHITE PAPER/BAAS. https://doi.org/10.3847/25C2cfeb.414C64ae

Doggett T, Greeley R, Figueredo P, Tanaka K (2009) Geologic stratigraphy and evolution of Europa’s surface. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 137–159

Dombard AJ, Sessa AM (2019) Gravity measurements are key in addressing the habitability of a subsurface ocean in Jupiter’s moon Europa. Icarus 325:31–38. https://doi.org/10.1016/j.icarus.2019.02.025

Dougherty MK, Khurana KK, Neubauer FM, Russell CT, Saur J, Leisner JS, Burton ME (2006) Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311:1406–1409. https://doi.org/10.1126/science.1120985

Durkheim E (1893) The division of labor in society (1997 ed.). Free Press, New York

Edwards BC, Chyba CF, Abshire JB, Burns JA, Geissler P, Konopliv AS, Malin MC, Ostro SJ, Rhodes C, Rudiger C, Shao XM (1997) July the Europa ocean discovery mission. In: Instruments, methods, and missions for the investigation of extraterrestrial microorganisms, SPIE, vol 3111, pp 249–261. https://doi.org/10.1117/12.278778

Europa Clipper Science Team (2022) Rules of the road for the Europa Clipper science team, rev a. Jet Propulsion Laboratory, JPL D-108643. https://archive.org/details/Europa-Clipper-Science-Team-Rules-of-the-Road

Europa Enhancement Science Definition Team (2012) Europa summer study final report. https://nspires.nasaprs.com/external/viewrepositorydocument/cmdocumentid=360231/solicitationId=%7B0D6361D2-8DA0-BF78-FEC4-A8B24B9D5137%7D/viewSolicitationDocument=1/Europa%20Summer%20Study%20Final%20Report%20Part%201.pdf

Europa Study Team (2012) Europa study 2012 report. Jet Propulsion Laboratory, JPL D-71990

Fanson J, Bernstein R, Angeli G, Ashby D, Bigelow B, Brossus G, Bouchez A, Burgett W, Contos A, Demers R, Figueroa F (2020) Overview and status of the Giant Magellan Telescope project. In: Ground-based and airborne telescopes VIII. SPIE conference, vol 11445, pp 295–314. https://doi.org/10.1117/12.2561852

Filacchione G et al. (2019) Serendipitous infrared observations of Europa by Juno/JIRAM. Icarus 328:1–13. https://doi.org/10.1016/j.icarus.2019.03.022

Fimmel RO, Swindell W, Burgess E (1977) Pioneer odyssey. Scientific and Technical Information Office, NASA

Foster JG, Rzhetsky A, Evans JA (2015) Tradition and innovation in scientists’ research strategies. Am Sociol Rev 80(5):875–908. https://doi.org/10.1177/0003122415601618

Goffman E (1961) Encounters: Two studies in the sociology of interaction. Ravenio Books

Grasset O, Dougherty MK, Coustenis A, Bunce EJ, Erd C, Titov D, Blanc M et al. (2013) JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet Space Sci 78:1–21. https://doi.org/10.1016/j.pss.2012.12.002

Greeley R, Johnson T (2004) Report of the NASA science definition team for the Jupiter icy moons orbiter (JIMO). Report to NASA

Greeley R, Sullivan R, Klemaszewski J, Homan K, Head JW III, Pappalardo RT, Veverka J, Clark BE, Johnson TV, Klaasen KP, Belton M (1998) Europa: initial Galileo geological observations. Icarus 135(1):4–24

Greeley R, Figueredo PH, Williams DA, Chuang FC, Klemaszewski JE, Kadel SD, Prockter LM, Pappalardo RT, Head JW III, Collins GC, Spaun NA (2000) Geologic mapping of Europa. J Geophys Res, Planets 105(E9):22559–22578. https://doi.org/10.1006/icar.1998.5969

Greeley R, Pappalardo R, Dougherty M, Lebreton JP (2010) Europa Jupiter system mission (EJSM): exploring the emergence of habitable worlds around gas giants. JPL Doc D–67959:261

Hand KP, Carlson RW (2015) Europa’s surface color suggests an ocean rich with sodium chloride. Geophys Res Lett 42(9):3174–3178. https://doi.org/10.1002/2015GL063559

Hand KP, Chyba CF, Priscu JC, Carlson RW, Nealson KH (2009) Astrobiology and the potential for life on Europa. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 589–629

Hand KP, Phillips CB, Murray A, Garvin JB, Maize EH, Gibbs RG, Reeves G et al. (2022) Science goals and mission architecture of the Europa Lander Mission concept. Planet Sci J 3:22. https://doi.org/10.3847/PSJ/ac4493

Hansen CJ, Waite JH, Bolton SJ (2009) Titan in the Cassini-Huygens extended mission. In: Brown RH, Lebreton JP, Waite JH (eds) Titan from Cassini-Huygens. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9215-2_17

Hendrix AR, Hurford TA, Barge LM, Bland MT, Bowman JS, Brinckerhoff W, Buratti BJ, Cable ML, Castillo-Rogez J, Collins GC, Diniega S (2019) The NASA roadmap to ocean worlds. Astrobiology 19(1):1–27. https://doi.org/10.1089/ast.2018.1955

Hickes M, Buratti BJ, Dombroski D (2022) Neptune’s moon Triton: continuing surface seasonal volatile transport. Planet Sci J 3:84. https://doi.org/10.3847/PSJ/ac5689

Howell SM (2021) The likely thickness of Europa’s icy shell. Planet Sci J 2:129. https://doi.org/10.3847/PSJ/abfe10

Instrument Concepts for Europa Exploration (ICEE) (2013) https://europa.nasa.gov/resources/170/instrument-concepts-for-europa-exploration-icee

Jia X, Kivelson MG, Khurana KK, Kurth WS (2018) Evidence of a plume on Europa from Galileo magnetic and plasma wave signatures. Nat Astron 2:459–463. https://doi.org/10.1038/s41550-018-0450-z

Johnson TV, McCord TB (1971) Spectral geometric albedo of the Galilean satellites, 0.3 to 2.5 microns. Astrophys J 169:589

Johnson TV, Yeates CM, Young R (1992) Space science reviews volume on Galileo mission overview. Space Sci Rev 60:3–21. https://doi.org/10.1007/BF00216848

Jones-Wilson L, Susca S, Reinholtz R (2018) Project-domain science traceability and alignment framework (P-STAF): analysis of a payload architecture. In: IEEE Aerospace Conference, pp 1–16. https://doi.org/10.1109/AERO.2018.8396634

Journaux B, Pakhomova A, Collings IE, Petitgirard S, Ballaran TB, Brown JM, Vance SD et al. (2023) On the identification of hyperhydrated sodium chloride hydrates, stable at icy moon conditions. Proc Natl Acad Sci 120(9):e2217125120. https://doi.org/10.1073/pnas.2217125120

Kattenhorn SA, Hurford T (2009) Tectonics of Europa. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 199–236

Kattenhorn SA, Prockter LM (2014) Evidence for subduction in the ice shell of Europa. Nature Geosci 7:762–767. https://doi.org/10.1038/ngeo2245

Kaula WM (1966) Theory of satellite geodesy. Blaisdell, Waltham. Republished by Dover, New York, 2000

Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P (2001) An off-axis hydrothermal vent field near the mid-Atlantic ridge at 30 N. Nature 412(6843):145–149. https://doi.org/10.1038/35084000

Kempf S et al (2024) SUDA: a SUrface Dust Analyser for compositional mapping of the Galilean moon Europa. Space Sci Rev 220

Kivelson MG, Khurana KK, Russell CT, Volwerk M, Walker RJ, Zimmer C (2000) Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289(5483):1340–1343. https://doi.org/10.1126/science.289.5483.1340

Kivelson MG, Jia X, Lee KA et al. (2023) The Europa Clipper magnetometer. Space Sci Rev 219:48. https://doi.org/10.1007/s11214-023-00989-5

Koh Z-W, Nimmo F, Lunine JI, Mazarico E, Dombard AJ (2022) Assessing the detectability of Europa’s seafloor topography from Europa Clipper’s gravity data. Planet Sci J 3:197. https://doi.org/10.3847/PSJ/ac82aa

Krüger H, Krivov AV, Sremčević M, Grün E (2003) Impact-generated dust clouds surrounding the Galilean moons. Icarus 164(1):170–187. https://doi.org/10.1016/S0019-1035(03)00127-1

Leonard EJ et al (2024) Global geologic map of Europa. US Geological Survey Scientific Investigations Map 3513. https://doi.org/10.3133/sim3513

Lucchitta BK, Soderblom LA (1982) Satellites of Jupiter. Morrison D (ed) University of Arizona Press, Tucson, pp 521–555

Malin MC, Pieri DC (1986) Europa. In: Burns JA, Matthews MS (eds) Satellites. University of Arizona Press, Tucson, pp 689–716

Mazarico E, Buccino D, Castillo-Rogez J et al. (2023) The Europa Clipper gravity and radio science investigation. Space Sci Rev 219:30. https://doi.org/10.1007/s11214-023-00972-0

McCollom TM (1999) Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J Geophys Res, Planets 104(E12):30729–30742. https://doi.org/10.1029/1999JE001126

McCord TB, Hansen GB, Fanale FP, Carlson RW, Matson DL, Johnson TV, Smythe WD, Crowley JK, Martin PD, Ocampo A, Hibbitts CA (1998) Salts on Europa’s surface detected by Galileo’s near infrared mapping spectrometer. Science 280(5367):1242–1245

McCoy KJ, DiNicola M, Everline C, Burgoyne H, Reinholtz K, Clement B (2021) Europa Clipper planetary protection probabilistic risk assessment summary. Planet Space Sci 196:105139. https://doi.org/10.1016/j.pss.2020.105139

McKinnon WB, Pappalardo RT, Khurana KK (2009) Europa: perspectives on an ocean world. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 697–710

Meitzler R, Jun I, Blase R et al. (2023) Investigating Europa’s radiation environment with the Radiation Monitor. Space Sci Rev 219:61. https://doi.org/10.1007/s11214-023-01003-8

Moore WB, Hussmann H (2009) Thermal evolution of Europa’s silicate interior. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 369–380

Moore WB, Schubert G (2000) The tidal response of Europa. Icarus 147(1):317–319. https://doi.org/10.1006/icar.2000.6460

Moore JM, Black G, Buratti B, Phillips CB, Spencer J, Sullivan R (2009) Surface properties, regolith, and landscape degradation. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 329–349

Morrison D, Cruikshank DP (1974) Physical properties of the natural satellites. Space Sci Rev 15:641–739. https://doi.org/10.1007/BF00175241

NASA (1999) Announcement of opportunity: Deep space systems program including Europa Orbiter, Pluto-Kuiper express, and Solar Probe. AO 99-OSS-04

NASA (2005) Prometheus Project Final Report. 982-R120461

NASA (2014) Second standalone missions of opportunity notice. (SALMON-2): Program element appendix (PEA) O: Europa instrument investigation. https://nspires.nasaprs.com/external/viewrepositorydocument/cmdocumentid=425528/solicitationId=%7BD663DD46-1929-9482-24BA-D5BCDBAA10BC%7D/viewSolicitationDocument=1/PEA%20O%20Europa.pdf

NASA (2021) Juno participating scientist program proposal information package. Research Opportunities in Space and Earth Science (ROSES). https://nspires.nasaprs.com/external/viewrepositorydocument/cmdocumentid=819014/solicitationId=%7B25E361E0-C3ED-533F-6833-FE0059DFACCB%7D/viewSolicitationDocument=1/2021%20Proposal%20Information%20Package_v2_20210628.pdf

NASA (2022) Planetary missions program plan: Program level requirements for the Europa Clipper Mission project, PLRA-PMP-SS-EURO, Revision C 07 February 2022

National Academies of Sciences, Engineering, and Medicine (2022) Origins, worlds, and life: a decadal strategy for planetary science and astrobiology 2023–2032

National Research Council (2003). New Frontiers in the Solar System: an integrated exploration strategy

National Research Council (2011) Vision and voyages for planetary science in the decade 2013–2022. https://solarsystem.nasa.gov/resources/598/vision-and-voyages-for-planetary-science-in-the-decade-2013-2022

National Research Council (2012) Assessment of planetary protection requirements for spacecraft missions to icy Solar System bodies

Neufeld MJ (2021) NASA, the search for life, and missions to Europa. Quest Hist Spacefl Q 28(4):9–32

Nielsen MW, Bloch CW, Schiebinger L (2018) Making gender diversity work for scientific discovery and innovation. Nat Hum Behav 2(10):726–734

Norwood J, Hammel H, Milam S, Stansberry J, Lunine J, Chanover N, Hines D, Sonneborn G, Tiscareno M, Brown M, Ferruit P (2016) Solar System observations with the James Webb Space Telescope. Publ Astron Soc Pac 128(960):025004. https://doi.org/10.1088/1538-3873/128/960/025004

Orton G et al (2021) Jupiter’s polar vortices in the mid-infrared as observed by Subaru/COMICS prior to and during the Juno mission. Europlanet Science Congress, virtual, September 13–24, 2021. https://doi.org/10.5194/epsc2021-59

Paczkowski BG, Larsen B, Ray T (2009) Managing complexity to maximize science return: science planning lessons learned from Cassini. In: 2009 IEEE Aerospace Conference, pp 1–14. https://doi.org/10.1109/AERO.2009.4839700

Pappalardo RT, Belton MJ, Breneman HH et al. (1999) Does Europa have a subsurface ocean? Evaluation of the geological evidence. J Geophys Res, Planets 104(E10):24015–24055. https://doi.org/10.1029/1998JE000628

Pappalardo RT, Vance S, Bagenal F, Bills BG, Blaney DL, Blankenship DD, Brinckerhoff WB et al. (2013) Science potential from a Europa lander. Astrobiology 13(8):740–773. https://doi.org/10.1089/ast.2013.1003

Paranicas C, Carlson RW, Johnson RE (2001) Electron bombardment of Europa. Geophys Res Lett 28:673–676. https://doi.org/10.1029/2000GL012320

Park RS, Bills BG, Buffington BB, Folkner WM, Konopliv AS, Martin-Mur TJ, Mastrodemos N, McElrath TP, Riedel JE, Watkins MM (2015) Improved detection of tides at Europa with radiometric and optical tracking during flybys. Planet Space Sci 112:10–14. https://doi.org/10.1016/j.pss.2015.04.005

Pasachoff JM, Leich P (2015) 400th anniversary of Marius’s book with the first image of an astronomical telescope and of orbits of Jovian moons. In: American astronomical society meeting, 2015 January. Abstracts, vol 225, p 215.05

Peale SJ, Cassen P, Reynolds RT (1979) Melting of Io by tidal dissipation. Science 203(4383):892–894. https://doi.org/10.1126/science.203.4383.892

Persaud DM, Armstrong ES (2020) Access-centered virtual conferencing for planetary science and beyond: Reflections from Space Science in Context 2020. Europlanet Science Congress, online, September 21–October 9, 2020. EPSC2020-211. https://doi.org/10.5194/epsc2020-211

Phillips CB et al (2020) An exploration strategy for Europa. Decadal Survey White Paper

Phillips CB et al (2023) A reconnaissance strategy for landing on Europa, based on Europa Clipper data. Planet Sci J submitted

Phipps PH et al. (2020) Where is the Io plasma torus? A comparison of observations by Juno radio occultations to predictions from Jovian magnetic field models. J Geophys Res 125:e2019JA027633. https://doi.org/10.1029/2019JA027633

Planetary Data System (2021) Planetary Data System standards reference V. 1.16.0. Jet Propulsion Laboratory, JPL D-108643. https://pds.nasa.gov/datastandards/documents/sr/current/StdRef_1.16.0.pdf

Porco CC, (2006) Cassini observes the active south pole of Enceladus. Science 311(5766):1393–1401. https://doi.org/10.1126/science.1123013

Prockter LM, Patterson GW (2009) Morphology and evolution of Europa’s ridges and bands. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 237–258

Ramsay S, Amico P, Bezawada N, Marchet FB, Caillier P, Cirasuolo M, Conzelmann R, Dorn R, Egner S, Frank C, George E (2020) A status report on the instruments for ESO’s extremely large telescope. In: Ground-based and airborne instrumentation for astronomy VIII. SPIE conference, vol 11447, pp 408–414. https://doi.org/10.1117/12.2562555

Rathbun JA, Diniega S, Quick LC, Richey C (2020) Why is equity, diversity, and inclusion (EDI) so difficult for scientists? In: 51st Annual Lunar and Planetary Science Conference, 2020, vol 2326, p 1594

Retherford KD et al (2024) Europa Ultraviolet Spectrograph (Europa-UVS). Space Sci Rev 220

Roberts JH, Vance S, Ganse A (2018) Detection of gravity anomalies on Europa using line-of-sight gravity profiles. AGU Fall Meeting, 2018 December. Abstract Pb42B-06

Roberts JH, McKinnon WB, Elder CM et al. (2023) Exploring the interior of Europa with the Europa Clipper. Space Sci Rev 219:46. https://doi.org/10.1007/s11214-023-00990-y

Roth L, Saur J, Retherford KD, Strobel DF, Feldman PD, McGrath MA, Nimmo F (2014) Transient water vapor at Europa’s south pole. Science 343(6167):171–174. https://doi.org/10.1126/science.1247051

Russell MJ, Murray AE, Hand KP (2017) The possible emergence of life and differentiation of a shallow biosphere on irradiated icy worlds: the example of Europa. Astrobiology 17(12):1265–1273. https://doi.org/10.1089/ast.2016.1600

Schmidt B (2020) The astrobiology of Europa and the Jovian system. In: Meadows V et al. (eds) Planetary astrobiology. University of Arizona Press, Tucson, pp 185–215

Schubert G, Sohl F, Hussmann H (2009) Interior of Europa. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 353–367

Shock EL, Holland ME (2007) Quantitative habitability. Astrobiology 7(6):839–851. https://doi.org/10.1089/ast.2007.0137

Showstack R (2015) NASA selects science instruments for Europa mission. Eos 96

Shrum W, Genuth J, Chompalov I (2007) Structures of scientific collaboration. MIT Press, Cambridge

Book   Google Scholar  

Smith DE (2009) A budget phasing approach to Europa Jupiter system mission science. White paper submitted to the 2011 Planetary Science Decadal Survey. https://solarsystem.nasa.gov/studies/123//a-budget-phasing-approach-to-Europa-Jupiter-system-mission-science

Smith DJ (2022) Here to Observe (H2O): pilot program update. NASA Planet Sci Advis Comm Meet 22:2022. https://science.nasa.gov/science-red/s3fs-public/atoms/files/08-Smithetal-H2O_TAGGED.pdf

Smith BA, Soderblom LA, Beebe R, Boyce J, Briggs G, Carr M, Collins SA, Cook AF, Danielson GE, Davies ME, Hunt GE, Ingersoll A, Johnson TV, Masursky H, McCauley J, Morrison D, Owen T, Sagan C, Shoemaker EM, Strom R, Suomi VE, Veverka J (1979a) The Galilean satellites and Jupiter: Voyager 2 imaging science results. Science 206:927–950. https://doi.org/10.1126/science.206.4421.927

Smith BA, Soderblom LA, Johnson TV, Ingersoll A, Collins SA, Shoemaker EM, Hunt GE, Masursky H, Carr M, Davies ME, Cook AF, Boyce J, Danielson GE, Owen T, Sagan C, Beebe RF, Veverka J, Strom RG, McCauley JF, Morrison D, Briggs GA, Suomi VE (1979b) The Jupiter system through the eyes of Voyager 1. Science 204:951–957. https://doi.org/10.1126/science.204.4396.951

Smith-Doerr L, Alegria SN, Sacco T (2017) How diversity matters in the US science and engineering workforce: a critical review considering integration in teams, fields, and organizational contexts. Engag Sci Technol Soc 3:139–153. https://doi.org/10.17351/ests2017.142

Snodgrass C et al. (2017) The 67P/Churyumov-Gerasimenko observation campaign in support of the Rosetta mission. Philos Trans R Soc A, Math Phys Eng Sci 375(2097):20160249. https://doi.org/10.1098/rsta.2016.0249

Soderlund KM (2019) Ocean dynamics of outer Solar System satellites. Geophys Res Lett 46(15):8700–8710. https://doi.org/10.1029/2018GL081880

Sotin C, Tobie G, Wahr J, McKinnon WB, Dotson R (2009) Tides and tidal heating on Europa. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 85–118

Sparks WB et al. (2016) Probing for evidence of plumes on Europa with HST/STIS. Astrophys J 829(2):121. https://doi.org/10.3847/0004-637X/829/2/121

Sparks WB et al. (2017) Active cryovolcanism on Europa? Astrophys J Lett 839:L18. https://doi.org/10.3847/2041-8213/aa67f8

Spencer JR et al. (2006) Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science 311:1401–1405. https://doi.org/10.1126/science.1121661

Srinivasan JM et al (2024) The Europa Clipper flight system. Space Sci Rev 220

Steinbrügge G, Schroeder DM, Haynes MS, Hussmann H, Grima C, Blankenship DD (2018) Assessing the potential for measuring Europa’s tidal love number \(h_{2}\) using radar sounder and topographic imager data. Earth Planet Sci Lett 482:334–341. https://doi.org/10.1016/j.epsl.2017.11.028

Susca S, Jones-Wilson LL, Oaida BV (2017) A framework for writing measurement requirements and its application to the planned Europa mission. In: IEEE Aerospace Conference, pp 1–18. https://doi.org/10.1109/AERO.2017.7943667

Swezey C, Vertesi J (2019) Working apart, together: the challenges of co-work. In: Proceedings of the ACM on human-computer interaction, 2019 nov 7, 3(CSCW), pp 1–22. https://doi.org/10.1145/3359306

Tittemore WC, Sinton WM (1989) Near-infrared photometry of the Galilean satellites. Icarus 77:82–97. https://doi.org/10.1016/0019-1035(89)90008-0

Trumbo SK, Brown ME (2023) The distribution of CO 2 on Europa indicates an internal source of carbon. Science 381:1308–1311. https://doi.org/10.1126/science.adg4155

Trumbo SK, Brown ME, Butler BJ (2018) ALMA thermal observations of Europa. Astron J 156(4):161. https://doi.org/10.3847/1538-3881/aada87

Trumbo SK, Brown ME, Hand KP (2019) Sodium chloride on the surface of Europa. Sci Adv 5(6):eaaw7123. https://doi.org/10.1126/sciadv.aaw7123

Trumbo SK, Becker TM, Brown ME, Denman WT, Molyneux P, Hendrix A, Retherford KD, Roth L, Alday J (2022) A new UV spectral feature on Europa: confirmation of NaCl in leading-hemisphere chaos terrain. Planet Sci J 3(2):27. https://doi.org/10.48550/arXiv.2201.01333

Turco C (2016) The conversational firm: rethinking bureaucracy in the age of social media. Columbia University Press, New York

Turtle EP et al (2024) The Europa imaging system (EIS) investigation. Space Sci Rev 220

Uzzi B, Mukherjee S, Stringer M, Jones B (2013) Atypical combinations and scientific impact. Science 342(6157):468–472. https://doi.org/10.1126/science.1240474

Vance S, Goodman J (2009) Oceanography of an ice-covered moon. In: Pappalardo RT, McKinnon WB, Khurana KK (eds) Europa. University of Arizona Press, Tucson, pp 459–482

Vance SD, Hand KP, Pappalardo RT (2016) Geophysical controls of chemical disequilibria in Europa. Geophys Res Lett 43(10):4871–4879. https://doi.org/10.1002/2016GL068547

Vance SD Craft KL, Shock E et al. (2023) Investigating Europa’s habitability with the Europa Clipper. Space Sci Rev 219:81. https://doi.org/10.1007/s11214-023-01025-2

Verma AK, Margot JL (2018) Expected precision of Europa Clipper gravity measurements. Icarus 314:35–49. https://doi.org/10.1016/j.icarus.2018.05.018

Vertesi J (2019) All these worlds are yours except…: science fiction and folk fictions at NASA. Engag Sci Technol Soc 5:135–159. https://doi.org/10.17351/ests2019.315

Vertesi J (2020a) Shaping science: organizations, decisions, and culture on NASA’s teams. University of Chicago Press, Chicago

Vertesi J (2020b) Testing planets: institutions tested in an era of uncertainty. Br J Sociol 71(3):474–488. https://doi.org/10.1111/1468-4446.12725

Vertesi J, Dourish P (2011) The value of data: considering the context of production in data economies. In: Proceedings of the ACM 2011 conference on computer supported cooperative work, pp 533–542. https://doi.org/10.1145/1958824.1958906

Villanueva GL, Hammel HB, Milam SN, Faggi S, Kofman V, Roth L, Hand KP, Paganini L, Stansberry J, Spencer J, Protopapa S, Strazulla G, Cruz-Mermy G, Glein CR, Cartwright R, Liuzzi G (2023) Endogenous CO 2 ice mixture on the surface of Europa and no detection of plume activity. Science 381(6664):1305–1308. https://doi.org/10.1126/science.adg4270

Waite JH Burch JL, Brockwell TG et al. (2024) MASPEX-Europa: the Europa Clipper neutral gas mass spectrometer investigation. Space Sci Rev 220:30. https://doi.org/10.1007/s11214-024-01061-6

Westlake JH, McNutt RL, Grey M et al. (2023) The Plasma Instrument for Magnetic Sounding (PIMS) on the Europa Clipper spacecraft. Space Sci Rev 219:62. https://doi.org/10.1007/s11214-023-01002-9

Witasse O The JUICE Teams (2020) JUICE (Jupiter Icy Moon Explorer): a European mission to explore the emergence of habitable worlds around gas giants. Europlanet Science Congress 2020, online, 21 September–9 Oct 2020, EPSC2020-76. https://doi.org/10.5194/epsc2020-76

Withers P (2010) Prediction of uncertainties in atmospheric properties measured by radio occultation experiments. Adv Space Res 46:58–73. https://doi.org/10.1016/j.asr.2010.03.004

Zahnle K, Schenk P, Levison H, Dones L (2003) Cratering rates in the outer Solar System. Icarus 163(2):263–289. https://doi.org/10.1016/S0019-1035(03)00048-4

Zolotov MY, Shock EL (2004) A model for low-temperature biogeochemistry of sulfur, carbon, and iron on Europa. J Geophys Res, Planets 109(E6). https://doi.org/10.1029/2003JE002194

Download references

Acknowledgements

This manuscript is a high-level summary of work carried out by thousands of engineers and scientists: at the Jet Propulsion Laboratory, California Institute of Technology; the Johns Hopkins University Applied Physics Laboratory; each of the institutions that supplied science instruments for the mission (Arizona State University; Southwest Research Institute; University of Colorado at Boulder; University of California, Los Angeles); and at government and contractor institutions across the United States and in Europe. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and affiliations.

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

Robert T. Pappalardo, Bonnie J. Buratti, David A. Senske, Diana L. Blaney, Brian G. Paczkowski, Trina L. Ray, Jennifer Kampmeier, Samuel M. Howell, Erin J. Leonard, Cynthia B. Phillips, Ingrid J. Daubar, Jordana Blacksberg, Shawn M. Brooks, Mathieu N. Choukroun, Corey J. Cochrane, Serina Diniega, Catherine M. Elder, Murthy S. Gudipati, Sylvain Piqueux, Gregor Steinbrügge, Morgan L. Cable, Jennifer E. C. Scully, Julie C. Castillo-Rogez, Hamish C. F. C. Hay, Divya M. Persaud, Carol A. Raymond, Steven D. Vance, Kevin P. Hand, Alina Moussessian, Jordan P. Evans, Timothy W. Larson, L. Alberto Cangahuala, Glen G. Havens, Brent B. Buffington, Ben Bradley, Stefano Campagnola, Sean H. Hardman, Jeffrey M. Srinivasan, Kendra L. Short, Thomas C. Jedrey, Joshua A. St. Vaughn & Kevin P. Clark

Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA

Haje Korth, Elizabeth P. Turtle, Joseph H. Westlake, Kate L. Craft, Rachel L. Klima, Alexandra Matiella Novak, Carolyn M. Ernst, Adrienn Luspay-Kuti, Abigail M. Rymer, James H. Roberts, Louise M. Prockter, Charles A. Hibbitts, G. Wesley Patterson & Ralph L. McNutt Jr.

Institute for Geophysics, University of Texas, Austin, TX, USA

Donald D. Blankenship

Southwest Research Institute, San Antonio, TX, USA

James L. Burch, Kurt D. Retherford, Christopher R. Glein, Danielle Y. Wyrick, Tracy C. Becker, Timothy G. Brockwell & G. Randall Gladstone

Arizona State University, Tempe, AZ, USA

Philip R. Christensen, Mikhail Y. Zolotov & Everett L. Shock

Oxford University, Oxford, England, UK

Hamish C. F. C. Hay

University of Glasgow, Glasgow, Scotland, UK

Divya M. Persaud

University of Colorado, Boulder, CO, USA

Sascha Kempf & Hsiang-Wen Hsu

University of Michigan, Ann Arbor, Ann Arbor, MI, USA

Margaret G. Kivelson & Xianzhe Jia

University of California Los Angeles, Los Angeles, CA, USA

Margaret G. Kivelson

NASA Goddard Space Flight Center, Greenbelt, MD, USA

Erwan Mazarico

Washington University, Saint Louis, MO, USA

William B. McKinnon

NASA Ames Research Center, Mountain View, CA, USA

Jeffrey M. Moore

Stanford University, Stanford, CA, USA

Dustin M. Schroeder

University of California Santa Cruz, Santa Cruz, CA, USA

Francis Nimmo

SETI Institute, Mountain View, CA, USA

Melissa A. McGrath

Southwest Research Institute, Boulder, CO, USA

John R. Spencer

Cornell University, Ithaca, NY, USA

Jonathan I. Lunine, Britney E. Schmidt, Julie A. Rathbun & Alexander G. Hayes

University of Oregon, Eugene, OR, USA

Carol S. Paty

Massachusetts Institute of Technology, Cambridge, MA, USA

Jason M. Soderblom & Benjamin P. Weiss

Wheaton College, Norton, MA, USA

Geoffrey C. Collins

Planetary Science Institute, Tucson, AZ, USA

Julie A. Rathbun

University of Arizona, Tucson, AZ, USA

Alfred S. McEwen

Princeton University, Princeton, NJ, USA

Janet Vertesi

NASA Headquarters, Washington, DC, USA

Curt Niebur

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Robert T. Pappalardo .

Ethics declarations

Competing interests.

The authors declare that they have no conflicts of interest. B.B., H.K. and D.A.S. are Guest Editors of this collection, but were not involved in the peer review of this article.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Europa Clipper: A Mission to Explore Ocean World Habitability

Edited by Haje Korth, Bonnie J. Buratti and David Senske

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Pappalardo, R.T., Buratti, B.J., Korth, H. et al. Science Overview of the Europa Clipper Mission. Space Sci Rev 220 , 40 (2024). https://doi.org/10.1007/s11214-024-01070-5

Download citation

Received : 16 October 2023

Accepted : 25 April 2024

Published : 23 May 2024

DOI : https://doi.org/10.1007/s11214-024-01070-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Europa Clipper
  • Habitability

Advertisement

  • Find a journal
  • Publish with us
  • Track your research

COMMENTS

  1. Inicio

    CATÁLOGOS MAPA TOURS. Leyendas de Europa. Esencias de Norte África y Oriente Medio. Vuelos Especiales. Circuitos Senior. catalogos_mapamundi. CATÁLOGOS MAPA MUNDI. 2024 Grandes Viajes. 2024 Lo Mejor de... Grandes Viajes. 2024 Viajes de Novios. footer. Mapatours. Quienes somos; Contacto;

  2. Mapa Tours Lanza Su Nuevo Catálogo De Viajes Por Europa Para 2023

    5/5 - (1 voto) El tour operador MAPA TOURS, que forma parte de MAPA GROUP TRAVEL, ha lanzado su nuevo catálogo de viajes por Europa, basado en atractivos circuitos para descubrir los mejores destinos del continente entre mayo y diciembre de 2023. Según la dirección comercial de MAPA TOURS, "afrontamos este año con muchas ganas e ilusión.

  3. Mapa Tours

    Tesoros de Irlanda e Irlanda del Norte I. 211. 8 días. 3 de Junio. Valencia. 1.349€. FRANCIA ALEMANIA Y SUIZA. Ruta del Champagne y Alsacia. 249.

  4. PDF Catalogo Mapatours Senior Ene Jun 2023

    EUROPA, NORTE DE ÁFRICA Y MEDIO ORIENTE Enero - Junio 2023 CIRCUITOSSENIOR. Equipo MAPA TOURS INDICE Italia Mágica I 6 Italia Mágica II 7 Puglia y costa Amalfitana 8 Sicilia Clásica 9 París, Bretaña y Normandía 10 Selva Negra, Suiza y Alsacia 11 París y los Países Bajos 12

  5. Mapa Tours, Nuevo Catálogo De Viajes Por Europa 2023

    Madrid, a 8 de marzo de 2023.-El tour operador MAPA TOURS, que forma parte de MAPA GROUP TRAVEL, ha lanzado su nuevo catálogo de viajes por Europa, basado en atractivos circuitos para descubrir los mejores destinos del continente entre mayo y diciembre de 2023. Según la dirección comercial de MAPA TOURS, "afrontamos este año con muchas ganas e ilusión.

  6. Mapa Tours lanza su nuevo catálogo de viajes por Europa para 2023

    El tour operador MAPA TOURS, que forma parte de MAPA GROUP TRAVEL, ha lanzado su nuevo catálogo de viajes por Europa, basado en atractivos circuitos para descubrir los mejores destinos del continente entre mayo y diciembre de 2023. Según la dirección comercial de MAPA TOURS, "afrontamos este año con muchas ganas e ilusión. Llevamos meses destinando todos nuestros esfuerzos a presentar ...

  7. Inicio

    Navegación. Saltar al contenido. ...

  8. Europamundo Vacaciones

    Europamundo Vacaciones: Los Circuitos Europeos mas Flexibles. Salidas 100% garantizadas.Cree su propio circuito. Tres Europas, Tres Series. Serie Premire y Serie Turista. Circuitos Europa Nordica y Central, Circuitos Europa Mediterranea, Circuitos Europa Atlantica, Circuitos en Peninsula Iberica

  9. Circuitos Europa Mapatours 2023

    Circuitos Europa Mapatours 2023. Descripción del touroperador. Información del catálogo de viajes Circuitos Europa Mapatours 2023. Visualizar el folleto de viajes online. Descargar catálogo de viajes Circuitos Europa Mapatours 2023. Video promocional del destino.

  10. Mapa Tours lanza su nuevo catálogo de viajes por Europa para 2023

    El tour operador "Mapa Tours", que forma parte de Mapa Group Travel, ha lanzado su nuevo catálogo de viajes por Europa, basado en atractivos circuitos para descubrir los mejores destinos del continente entre mayo y diciembre de 2023. Según la dirección comercial de "Mapa Tours", "afrontamos este año con muchas ganas e ilusión.

  11. 10 Mejores Circuitos por Europa 2024/2025

    Descubre TourRadar. ¡Las ofertas de viajes del Black Friday volverán en 2024! ¡Las ofertas de viajes del Cyber Monday volverán en 2024! Explora los mejores tours en Europa con 87,599 reviews visitando lugares como Viena y Atenas. Todas las grandes marcas. La mayor selección.

  12. MapaTours

    Precio desde 605 € pax/paquete. ver disponibilidad. ITI753 - JORDANIA, DUNAS Y NABATEOS AGP. 7 Noches. Del 02/06/2024 al 07/07/2024. Catálogos. Precio desde 635 € pax/paquete. ver disponibilidad. ITI753 - JORDANIA, DUNAS Y NABATEOS VLC.

  13. Europa Tours

    Latest Europa Tours. . More Details. HOLLAND Grand Holland Tour & the Tulip Festival. 01 - 06 May 2024. More Details. Czech Republic Prague. 02 - 07 May 2024 More Details. North Macedonia SKOPJE & OHRID. 09 - 16 May 2024. More Details. The Pearl of Hungary ...

  14. Home

    The best River Cruises 2024. 10 ships / 4 companies. More than 100 departures. 32 routes. Rhine, Danube, Netherlands, Croatia and Montenegro. 18 countries, 82 cities. Guaranteed Service in English. Online Availability and Immediate Confirmation. Unique combinations with land tours.

  15. Tour Dates

    tour. jun 08 ag hallenstadion zurich, switzerland tickets. jun 11 lanxess arena cologne, germany tickets. jun 14 ziggo dome amsterdam, netherlands tickets. jun 15 ziggo dome amsterdam, netherlands tickets. jun 18 the o2 london, uk tickets. jun 19 the o2 london, uk tickets. jun 22 accor arena paris, france tickets.

  16. Viajar en un tour por Europa este 2023: todo lo que debes saber

    París, Londres, Ámsterdam e Italia (avión) + Ext. Costa Azul y España: 20 días Paris-Madrid. En conclusión, hemos aprendido los fundamentos principales para la planificación de un viaje a Europa durante el 2023. Asimismo, incluye las ventajas de optar por un tour, como escoger el mejor tour que se adapte a tus necesidades, los cambios ...

  17. Mapa Tours lanza dos nuevos catálogos para viajar a Escandinavia

    MADRID, 9 Mar. (EUROPA PRESS) - Mapa Tours ha lanzado dos nuevos catálogos para viajar de mayo a diciembre de 2023, uno dedicado a Escandinavia y países bálticos y otro a norte de África ...

  18. Mapa Tours apuesta por los Balcanes para este verano

    MADRID, 9 Feb. (EUROPA PRESS) -. Mapa Tours ha lanzado una nueva programación especial para este verano y apuesta por los países balcánicos, ofreciendo dos completos circuitos de ocho días ...

  19. Europa Tours

    Latest Europa Tours. Search Tours. Between: And:. .. 01 Mar 24 - 31 Oct 24. ... HOLLAND Grand Holland Tour & the Tulip Festival. Grand Holland Tour & the Tulip Festival 01 May 24 - 06 May 23. 01 - 06 May 2024. €1100. Czech Republic Prague. Czech Republic PRAGUE 02 May 24 - 07 May 24. 02 - 07 May 2024

  20. Folletos

    Folletos - 2023 - 2024 - EUROPA - Reservas Online Surland. Rutas por Capitales Imperiales. Rutas por Escandinavia y Países Bálticos. Circuitos Completos por Europa. Cruceros Fluviales. Información general, Índice, Seguro y Descuentos. Rutas por España, Caminos de Santiago, Portugal y Marruecos. Rutas por Italia comenzando en Roma.

  21. Viajar con Mapaplus

    Seguros de Viaje. Todos los pasajeros que contraten un circuito o tour en cualquiera de los programas incluidos en el catálogo de viajes Mapaplus, gozan de un Seguro de Protección y Asistencia suscrito con la Compañía de Seguros MAPFRE con las siguientes coberturas y protección de asistencia en viaje. Click aquí para más info.

  22. Panavisión Tours. Las mejores ofertas para tus vacaciones y escapadas

    Panavisión Tours. Las mejores ofertas para tus vacaciones y escapadas. En nuestro folleto de Circuitos, encontrará una selección de los mejores tours a Europa y otros destinos de todo el mundo. En el folleto de Cruceros Fluviales podrá descubrir una nueva forma de viajar, navegando por los mayores ríos de Europa y conociendo las ciudades ...

  23. 2024 European Tour

    2024 European Tour season. The 2024 European Tour, titled as the 2024 DP World Tour for sponsorship reasons, is the 53rd season of the European Tour, the main professional golf tour in Europe since its inaugural season in 1972. It is the third season of the tour under a title sponsorship agreement with DP World that was announced in November 2021.

  24. PDF Catalogo Mapatours Senior Jun Dic 2023

    EUROPA, NORTE DE ÁFRICA Y MEDIO ORIENTE Junio - Diciembre 2023 CIRCUITOSSENIOR. Equipo MAPA TOURS INDICE Italia Mágica I 6 Italia Mágica II 7 Costa Amalfitana y la Puglia 8 Sicilia Senior al Completo 9 Gran Tour de Inglaterra 10 Irlanda, la isla Esmeralda 11 Loira, Bretaña y Normandía 12

  25. 2ª Tour Estonia: la etapa en directo

    Información completa de la carrera 2.1 del UCI Europa Tour. Últimas noticias. 2ª Tour Estonia: la etapa en directo; GP Ciudad Eibar: Recorrido y perfil 2024; Vuelta Andalucía féminas: Perfiles de etapa y equipos; Toda la actualidad gratis en tu WhatsApp y/o Telegram; ... 20:00 · 04/08/2023

  26. NASA's Europa Clipper Makes Cross-Country Flight to Florida

    Teams at Kennedy spent several hours offloading Europa Clipper before transferring it to the Payload Hazardous Servicing Facility, where they will process the spacecraft and perform final checkouts as part of prelaunch preparations.. Europa Clipper joins the spacecraft's two five-panel solar arrays that arrived at Kennedy in March. The arrays, each 46.5 feet (14.2 meters) long, will collect ...

  27. Dentro la reforma de pensional se podrán heredar las pensiones tras

    La reforma pensional de 2023 permite heredar la pensión en varios casos. Entérese si esto podría aplicar para usted. La pérdida de un ser querido es causante de dolor y reflexión. En medio de ...

  28. El Villarreal domó al 'red devil': 3 años de la Europa League ...

    Desde aquella gesta de David haciendo uso de su honda para matar a Goliat, innumerables son las crónicas que asemejan la epopeya bíblica con algún triunfo deportivo que se eleve a la categoría de gesta. Al Villarreal le pasó y lo contamos, en nuestra edición del 26 de mayo de 2021, cuando venció al Manchester United en la final de la Europa League en el Arena Gdansk de Polonia.

  29. Žehra: Stadtplan, Tipps & Infos

    Maps Route planen Merkliste Kontakt & Notruf Kontakt & Notruf. Hilfe Deutschland & Europa ... 089 20 20 4000 Pannenhilfe Deutschland +49 89 22 22 22 Pannenhilfe Europa +49 89 76 76 76 Ambulanz Service Service-Nummer Alles außer Panne & Notfall 0800 5 10 11 12 (Mo-Sa: 8:00 - 20:00 Uhr) Was tun nach einer Panne? ... Romantische Tour in Levoca ...

  30. Science Overview of the Europa Clipper Mission

    The goal of NASA's Europa Clipper mission is to assess the habitability of Jupiter's moon Europa. After entering Jupiter orbit in 2030, the flight system will collect science data while flying past Europa 49 times at typical closest approach distances of 25-100 km. The mission's objectives are to investigate Europa's interior (ice shell and ocean), composition, and geology; the ...