position voyager 1 und 2

  • Object Information
  • Planetarium

position voyager 1 und 2

Voyager 1 live position and data

This page shows Voyager 1 location and other relevant astronomical data in real time. The celestial coordinates, magnitude, distances and speed are updated in real time and are computed using high quality data sets provided by the JPL Horizons ephemeris service (see acknowledgements for details). The sky map shown in the background represents a rectangular portion of the sky 60x40 arcminutes wide. By comparison the diameter of the full Moon is about 30 arcmins, so the full horizontal extent of the map is approximately 2 full Moons wide. Depending on the device you are using, the map can be dragged horizondally or vertically using the mouse or touchscreen. The deep sky image in the background is provided by the Digitized Sky Survey ( acknowledgements ).

Current close conjunctions

List of bright objects (stars brighter than magnitude 9.0 and galaxies brighter than magmitude 14.0) close to Voyager 1 (less than 1.5 degrees):

Additional resources

  • 15 Days Ephemerides
  • Interactive Sky Map (Planetarium)
  • Rise & Set Times
  • Distance from Earth

Astronomy databases

  • The Digitized Sky Survey, a photographic survey of the whole sky created using images from different telescopes, including the Oschin Schmidt Telescope on Palomar Mountain
  • The Hipparcos Star Catalogue, containing more than 100.000 bright stars
  • The PGC 2003 Catalogue, containing information about 1 million galaxies
  • The GSC 2.3 Catalogue, containing information about more than 2 billion stars and galaxies

NASA Logo

Interstellar Messengers

The Voyager spacecraft against a sparkly blue background

Voyager 1 and its twin Voyager 2 are the only spacecraft ever to operate outside the heliosphere, the protective bubble of particles and magnetic fields generated by the Sun. Voyager 1 reached the interstellar boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018.

Mission Type

Science Targets

Voyager Blog

Artist's concept of Voyager 1 passing beyond the heliopause, which is the boundary between our solar bubble and the matter ejected by explosions of other stars

Mission Updates

Voyager 1 resumes sending engineering updates to Earth.

Latest News

NASA’s Voyager Team Focuses on Software Patch, Thrusters

position voyager 1 und 2

NASA’s Voyager Will Do More Science With New Power Strategy

position voyager 1 und 2

Edward Stone Retires After 50 Years as NASA Voyager’s Project Scientist

position voyager 1 und 2

Engineers Solve Data Glitch on NASA’s Voyager 1

position voyager 1 und 2

Voyager, NASA’s Longest-Lived Mission, Logs 45 Years in Space

The Interstellar Mission

After completing the first in-depth reconnaissance of the outer planets, the twin Voyagers are on a new mission to chart the edge of interstellar space.

The Golden Record

The contents of the golden record were selected for NASA by a committee led by Carl Sagan of Cornell University.

The Spacecraft

The twin Voyagers are escaping our solar system in different directions at more than 3 astronomical units (AU) a year.

A close up of the golden record. The label says "To the makers of music - all worlds, all times."

The Pale Blue Dot

The behind-the-scenes story of the making of Voyager 1's iconic image of Earth as "a mote of dust suspended in a sunbeam."

Earth as a tiny bluish dot suspended in a grainy beam of light.

Discover More Topics From NASA

Tendrils of hot plasma stream from the Sun.

Our Solar System

An illustration of a slice of a bright orange sun, with planets, a comet and asteroids against a blue-black backround.

Heliosphere

position voyager 1 und 2

Image that reads Space Place and links to spaceplace.nasa.gov.

Voyager 1 and 2: The Interstellar Mission

An image of Neptune taken by the Voyager 2 spacecraft.

An image of Neptune taken by the Voyager 2 spacecraft. Image credit: NASA

NASA has beautiful photos of every planet in our solar system. We even have images of faraway Neptune , as you can see in the photo above.

Neptune is much too distant for an astronaut to travel there with a camera. So, how do we have pictures from distant locations in our solar system? Our photographers were two spacecraft, called Voyager 1 and Voyager 2!

An artist’s rendering of one of the Voyager spacecraft.

An artist’s rendering of one of the Voyager spacecraft. Image credit: NASA

The Voyager 1 and 2 spacecraft launched from Earth in 1977. Their mission was to explore Jupiter and Saturn —and beyond to the outer planets of our solar system. This was a big task. No human-made object had ever attempted a journey like that before.

The two spacecraft took tens of thousands of pictures of Jupiter and Saturn and their moons. The pictures from Voyager 1 and 2 allowed us to see lots of things for the first time. For example, they captured detailed photos of Jupiter's clouds and storms, and the structure of Saturn's rings .

Image of storms on Jupiter taken by the Voyager 1 spacecraft.

Image of storms on Jupiter taken by the Voyager 1 spacecraft. Image credit: NASA

Voyager 1 and 2 also discovered active volcanoes on Jupiter's moon Io , and much more. Voyager 2 also took pictures of Uranus and Neptune. Together, the Voyager missions discovered 22 moons.

Since then, these spacecraft have continued to travel farther away from us. Voyager 1 and 2 are now so far away that they are in interstellar space —the region between the stars. No other spacecraft have ever flown this far away.

Where will Voyager go next?

Watch this video to find out what's beyond our solar system!

Both spacecraft are still sending information back to Earth. This data will help us learn about conditions in the distant solar system and interstellar space.

The Voyagers have enough fuel and power to operate until 2025 and beyond. Sometime after this they will not be able to communicate with Earth anymore. Unless something stops them, they will continue to travel on and on, passing other stars after many thousands of years.

Each Voyager spacecraft also carries a message. Both spacecraft carry a golden record with scenes and sounds from Earth. The records also contain music and greetings in different languages. So, if intelligent life ever find these spacecraft, they may learn something about Earth and us as well!

A photo of the golden record that was sent into space on both Voyager 1 and Voyager 2.

A photo of the golden record that was sent into space on both Voyager 1 and Voyager 2. Image credit: NASA/JPL-Caltech

More about our universe!

A sign that says welcome to interstellar space

Where does interstellar space begin?

an illustration arrows pointing at stars on a dark sky

Searching for other planets like ours

an illustrated game box cover for the Galactic Explorer game

Play Galactic Explorer!

If you liked this, you may like:

Illustration of a game controller that links to the Space Place Games menu.

Voyager 1: 'The Spacecraft That Could' Hits New Milestone

position voyager 1 und 2

Voyager 1, already the most distant human-made object in the cosmos, reaches 100 astronomical units from the sun on Tuesday, August 15 at 5:13 p.m. Eastern time (2:13 p.m. Pacific time).

News Media Contact

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-0880

[email protected]

To revisit this article, visit My Profile, then View saved stories .

  • Backchannel
  • Newsletters
  • WIRED Insider
  • WIRED Consulting

Ramin Skibba

Voyager 1 and 2, Humanity’s Interstellar Envoys, Soldier On at 45

Person working on Voyager Antenna Disc Construction

Today is the 45th anniversary of the launch of Voyager 1, one of humanity’s iconic twin emissaries to the cosmos. (Its sibling, Voyager 2, launched a couple of weeks earlier.) Now in the dark, far reaches of interstellar space—more than 10 billion miles from home, where our sun looks like any other bright star—the pair are still doing science. They carry with them the Golden Records, bearing the sounds and symbols of Earth, should some extraterrestrial ever rendezvous with one of the spacecraft and become curious about its distant sender.

“I’ve been following the arc of Voyager over my career,” says Linda Spilker, Voyager’s deputy project scientist at NASA’s Jet Propulsion Laboratory, who started at the agency in 1977, the year the probes launched. “I’m amazed at how long both of these spacecraft, Voyager 1 and Voyager 2, have been able to keep going and return unique science about new places that no spacecraft has visited before. And now they’ve become interstellar travelers. How cool is that?”

The two car-sized probes, each with a 12-foot antenna mounted on top, had one primary task: to visit the gas giants in our own solar system. After their launches, the Voyagers’ paths diverged, but they both took advantage of a rare planetary lineup, snapping groundbreaking photos as they flew by Jupiter, Saturn, Uranus, and Neptune and revealed tantalizing details about the planets’ moons. By the end of 1989, they’d completed that mission. In 1990, Voyager 1 capped it by turning around and taking a poignant image of our own world, which astronomer and science communicator Carl Sagan dubbed the Pale Blue Dot .  

“Look again at that dot. That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, has lived out their lives,” Sagan wrote. The image of the Earth from a cosmic perspective—a mere “mote of dust suspended in a moonbeam,” as he put it—became nearly as memorable as the Earthrise photo taken by an Apollo 8 astronaut showing the planet as seen from the moon.

The two probes, which run on nuclear-powered systems called radioisotope thermoelectric generators (RTGs), kept flying. Our solar system has no clear boundary, but in the 2000s they crossed the “termination shock,” where solar wind particles abruptly slow below the speed of sound due to pressure from the gas and magnetic fields in interstellar space. Then in the 2010s, they breached the heliopause, the boundary between the solar wind and the interstellar wind. 

With four instruments operating on Voyager 1 and five aboard Voyager 2, they now have a new job: measuring the magnetic field strength, the density of the plasma, and the energy and direction of charged particles in the environment they’re traveling through. “The purpose of the interstellar mission is to measure the sun’s effects as we go further and further from Earth. We’re trying to find out how the sun’s heliosphere interacts with interstellar space,” says Suzanne Dodd, project manager of the Voyager interstellar mission at JPL. Voyager 1 is currently 14.6 billion miles from home, and Voyager 2 is 12.1 billion miles away, but for perspective, the nearest star is some 25 trillion miles away. (NASA maintains a tracker of their journeys .) It’s a remarkable coda for their mission, decades after the probes completed their main goals. 

Elon Musk’s Neuralink Had a Brain Implant Setback. It May Come Down to Design

Emily Mullin

How Not to Get Brain-Eating Worms and Mercury Poisoning

Angela Watercutter

Apple’s iPhone Spyware Problem Is Getting Worse. Here’s What You Should Know

Kate O'Flaherty

But they’ve always had a secondary task: conveying a message to any aliens from beyond the solar system who might one day peek inside a craft. Each one carries a Golden Record, which looks like vinyl but is made of metal. A team of scientists and artists, including Sagan and Frank Drake , who died last Friday, packed music, nature sounds, messages, photos, and more on each record—and they included players and instructions, should anyone find them. The ambitious project seeks to tell a story about humanity, what humans aspire to, and our world. It includes the music of Bach and Chuck Berry, and images of families, homes, and scientific advances. “The purpose of the record was to try to answer questions that we would have,” says Jon Lomberg, a scientific artist and the designer for the Golden Records team. “What were the beings like who sent it? What do they look like? What do they act like? What was their world like? So it’s really a self-portrait.”

Unlike the search for extraterrestrial intelligence , or SETI, the records are not designed to be a prelude to first contact. In fact, the Golden Records might be found millions of years from now, perhaps when human civilizations no longer exist. “It’s more like finding a fossil,” says Lomberg. “You can’t talk to the dinosaurs. This is a relic—our obituary in a way, the memento that we were once here.”

The Voyager probes were preceded by the Pioneer missions, which carried small metal plaques with symbolic messages . (The pair of Pioneers left the solar system in the 1980s and ’90s, but they’re no longer functioning.) But no space mission since has incorporated a similar record of humanity—though NASA’s New Horizons , for example, which flew by Pluto in 2015, offered another chance. That was a missed opportunity, Lomberg says, although it might still be possible to send a digital message to the spacecraft’s computer. That would be durable, but it would not last as long as the Golden Records.

The Voyagers have had a tangible influence on space exploration ever since. Their success inspired NASA and other agencies to revisit the outer planets, especially Jupiter and Saturn, and their myriad moons. These subsequent missions include Galileo , Juno , Cassini , and the European Space Agency’s Huygens lander, plus new probes in the works, such as the Europa Clipper , Dragonfly , ESA’s JUICE, and potential voyages to Uranus and Saturn’s moon Enceladus .

The Voyagers influenced pop culture too. The first Star Trek movie in 1979 included an alien spacecraft called “V’ger,” which was actually an altered fictional “Voyager 6.” Voyager and the Golden Records have turned up in TV shows like Saturday Night Live , The West Wing , and—of course— The X-Files . The composer Dario Marianelli even wrote a Voyager-inspired violin concerto.

The pair of spacecraft have lasted far longer than anyone imagined—and, Dodd says, the instruments are working and the data is still great. But they’re showing signs of age. In May, she and her team encountered a glitch in Voyager 1’s telemetry data, which would normally provide information to scientists back home about what the probe’s instruments are doing and whether they’re working properly. The data had been coming back garbled. Addressing the issue was complicated by the vast distance involved, since messages to and from Voyager 1 now take nearly 22 hours. 

Then last week, the team figured out what was wrong. Apparently, the attitude control system had suddenly started sending the telemetry data through the wrong computer, which was no longer working properly. They resolved the problem by routing the data back to the correct computer. “The spacecraft is healthy, it’s happy. It’s returning science data just beautifully,” Spilker says.

Even if Dodd, Spilker, and their colleagues can keep resolving these kinds of technical issues, however, the spacecraft have a more enduring problem: their power supplies. Their RTG systems provide power by converting heat from the radioactive decay of plutonium-238 into electricity. But after 45 years, the fuel is now generating 4 watts less per year. Dodd and her team have turned off any systems and instruments not involved in the interstellar mission—and in 2019, they started turning off heaters in some of the instruments that are still running. That added a couple of years to the spacecrafts’ lifespans.

Nevertheless, the Voyager probes might only have a few years, or perhaps a decade, left in them. Eventually, their dwindling power won’t be sufficient to run their instruments. “At that point, the Voyagers will become our silent ambassadors,” Spilker says.

As they hurtle at 35,000 miles per hour into the unknown with their powered-down machines, they will still carry humanity’s message in a bottle. “The Golden Record, a piece of human civilization, a piece of technology with a 1970s stamp on it—that is going to persevere. It’s not degrading. It’s going to last for billions of years. It’s going to outlast the planet that it came from. That’s mind-blowing kind of stuff,” says Jim Bell, a planetary scientist at Arizona State University and the author of a book on the Voyager mission’s 40th anniversary.

Bell speculates that it might not be aliens, but our own descendants, who ultimately spot the far-flung spacecraft. “My prediction is that the message really is going to be for us. We’re going to be the ones who go find it—in the far future, when it becomes easy to travel and be tourists and see the Voyagers,” he says. “We’ll be thinking: Wasn’t that one of the most amazing things we did as a species in the 20th century?”

You Might Also Like …

In your inbox: Will Knight's Fast Forward explores advances in AI

He emptied a crypto exchange onto a thumb drive —then disappeared

The real-time deepfake romance scams have arrived

Boomergasms are booming

Heading outdoors? Here are the best sleeping bags for every adventure

position voyager 1 und 2

Charlie Wood

Get Ready for Monster Hurricanes This Summer

Stephen Clark, Ars Technica

The Quest to Map the Inside of the Proton

Lyndie Chiou

In Defense of Parasitic Worms

Jesse Nichols

Environmental Damage Could Cost You a Fifth of Your Income Over the Next 25 Years

John Timmer, Ars Technica

1 in 3 Americans Live in Areas With Dangerous Air Pollution

Victoria St. Martin

The most distant spacecraft in the solar system — Where are they now?

An artist's depiction of one of the twin Voyager probes.

Humans have been flinging things into deep space for 50 years now, since the 1972 launch of Pioneer 10. We now have five spacecraft that have either reached the edges of our solar system or are fast approaching it: Pioneer 10, Pioneer 11, Voyager 1, Voyager 2 and New Horizons. 

Most of these probes have defied their expected deaths and are still operating long beyond their original mission plans. These spacecraft were originally planned to explore our neighboring planets, but now they're blazing a trail out of the solar system , providing astronomers with unique vantage points in space — and they've been up to a lot in 2022.

Voyagers 1 and 2

The Voyager missions celebrated a very special anniversary this year: 45 years of operations . From close fly-bys of the outer planets to exploring humans' furthest reach in space, these two spacecraft have contributed immensely to astronomers' understanding of the solar system. 

Related : Voyager: 15 incredible images of our solar system captured by the twin probes (gallery)  

Their main project now is exploring where the sun 's influence ends, and other stars' influences begin. Voyager 1 crossed the heliopause, the boundary where the sun's flow of particles ceases to be the most important influence, in 2012 with Voyager 2 following close after, in 2018. 

"Voyager 1 has now been in interstellar space for a decade…and it's still going, still going strong," Linda Spilker, Voyager project scientist and a planetary scientist at NASA's Jet Propulsion Laboratory (JPL) in California, told Space.com.

The mission team hit one major hiccup this year, when the spacecraft began sending home garbled information about its location. The engineers found the cause — the spacecraft was using a bad piece of computer hardware when it shouldn't have — and restored operations.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

These kinds of incidents are to be expected with an aging spacecraft, though. The team is also actively managing the power supply onboard each spacecraft, which is dwindling each year as the probes' radioactive generators grow increasingly inefficient. This year, mission personnel turned off heaters keeping a number of scientific instruments on board warm in the harsh, cold environment of space — and, much to everyone's surprise, those instruments are still working perfectly well.

orbital diagram showing the five most distant spacecraft.

The cameras may have been turned off decades ago, but the spacecrafts' other instruments are collecting data on the plasma and magnetic fields from the sun at a great distance away from the star itself. Because particles of the solar wind — the constant stream of charged particles flowing off the sun — take time to travel such a long way, distant observations allow scientists to see how changes from the sun propagate throughout our cosmic neighborhood. 

The edges of the solar system have been full of surprises, too. It would make sense that plasma from the sun becomes more sparse and spread out as you move away from the center of the solar system, but in fact, the Voyagers have encountered much denser plasma after crossing the heliopause. Astronomers are still puzzled about that one.

"It's just so amazing that even after all this time we continue to see the sun's influence in interstellar space," Spilker said. "I'm looking forward to Voyager continuing to operate, perhaps reaching the 50th anniversary." 

Pioneers 10 and 11

The Pioneer spacecraft hold a special place in space history because of their role as, you guessed it, pioneers. Unfortunately, these milestone 50-year-old spacecraft are non-functional — Pioneer 10 lost communications back in 2003, and Pioneer 11 has been silent since its last contact in 1995. 

But both these spacecraft are marks of humanity's presence in the solar system, and they are still continuing on their journeys, even if we're not sending them commands or firing their rockets anymore. Once a spacecraft is set on a trajectory out of the solar system, according to the laws of physics, it won't stop unless something changes its course.

New Horizons

New Horizons is by far the youngest sibling of these groundbreaking missions, having just launched in 2006 . After completing its famous flyby of dwarf planet Pluto in 2015 , this probe has been zooming out of the solar system at record speed, set to reach the heliopause around 2040. 

Not only has it completed its primary mission, but it successfully completed a flyby of the smaller Kuiper Belt object, Arrokoth , in 2019 as its first mission extension. Earlier this year, the spacecraft was put into hibernation mode because an extended mission hadn't yet been approved. But now, the team is excitedly moving into New Horizons' 2nd Kuiper Belt Extended Mission, or KEM2 for short. KEM2 began on Oct. 1 , although the spacecraft will hibernate until March 1, 2023.

In the meantime, the mission team is preparing for exciting new observations. With cutting-edge instruments — far more advanced than what the Voyagers carried in the 1970s — the team is prepared to use New Horizons as a powerhouse observatory in the distant solar system, providing a viewpoint we can't achieve here on Earth . 

Bonnie Burrati, planetary scientist at JPL and member of the New Horizons team, is particularly looking forward to new views of Kuiper Belt objects (KBOs), the chunks of ice and rock beyond Neptune . New Horizons' unique position in the outer solar system provides new angles of looking at these KBOs, she said. Different views can tell astronomers about how rough the objects' surfaces are, among other things, based on how light scatters and creates shadows on them. 

Another planetary scientist on the team from Southwest Research Institute in Colorado, Leslie Young, wants to use the spacecraft for a new look at something closer to home: the ice giants, Uranus and Neptune. New Horizons’ unique viewpoint provides scientists with information about how light scatters through the planets’ atmospheres—information we can’t get from here on Earth, since we can’t see Uranus and Neptune from that angle. Planetary scientists are eager for more information about these planets, especially as NASA begins planning for a new mission to visit Uranus.

— The icy 'space snowman' Arrokoth in deep space just got names for its best features — Pale Blue Dot at 30: Voyager 1's iconic photo of Earth from space reveals our place in the universe — Destination Pluto: NASA's New Horizons mission in pictures  

When the spacecraft wakes from hibernation, it will be past the so-called "Kuiper cliff," where scientists currently think there are far fewer large KBOs. "When we look at other star systems, we see debris disks extending to much larger distances from their host stars," Bryan Holler, an astronomer at Baltimore's Space Telescope Science Institute, told Space.com. "If ET were to look at our solar system, would they see the same thing?"

This next extended mission will even venture beyond New Horizons' original domain of planetary science. Now, the spacecraft will provide better-than-ever measurements of the background of light and cosmic rays in space, trace the distributions of dust throughout our solar system, and obtain crucial information on the sun's influence, complimentary to the Voyagers. Since the three functional far out spacecraft are heading in separate directions, they allow astronomers to map out irregularities in the solar system's structure.

Luckily for New Horizons, signs indicate that the spacecraft will have enough power to last through the 2040s and possibly beyond — each year, moving 300 million miles (480 million kilometers) farther into uncharted territory.

Follow the author at @ briles_34 on Twitter. Follow us on Twitter @ Spacedotcom and on Facebook .

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Briley Lewis

Briley Lewis (she/her) is a freelance science writer and Ph.D. Candidate/NSF Fellow at the University of California, Los Angeles studying Astronomy & Astrophysics. Follow her on Twitter @briles_34 or visit her website www.briley-lewis.com . 

China's Chang'e 6 mission to collect samples of the far side of the moon enters lunar orbit (video)

China launches Chang'e 6 sample-return mission to moon's far side (video)

Boeing's Starliner rolled off launch pad to replace 'buzzing' rocket valve (photo)

  • bolide I wonder if the JWST could see any of these satellites, if it aimed in their direction. Reply
bolide said: I wonder if the JWST could see any of these satellites, if it aimed in their direction.
  • View All 2 Comments

Most Popular

  • 2 A failed star and an ammonia trail could reveal how some giant exoplanets form
  • 3 World's largest visible light telescope spies a galaxy cluster warping spacetime
  • 4 SpaceX launching 20 satellites from California tonight on 2nd leg of Starlink doubleheader
  • 5 Star Wars makes Darth Jar Jar official in 'Lego Star Wars: Rebuild the Galaxy' mini-series (video)

position voyager 1 und 2

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

position voyager 1 und 2

NASA Invites Social Creators for Launch of NOAA Weather Satellite 

position voyager 1 und 2

NASA’s New Mobile Launcher Stacks Up for Future Artemis Missions 

NASA’s Webb Hints at Possible Atmosphere Surrounding Rocky Exoplanet

NASA’s Webb Hints at Possible Atmosphere Surrounding Rocky Exoplanet

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

Hubble Celebrates the 15th Anniversary of Servicing Mission 4

Hubble Celebrates the 15th Anniversary of Servicing Mission 4

Hubble Glimpses a Star-Forming Factory

Hubble Glimpses a Star-Forming Factory

position voyager 1 und 2

NASA Mission Strengthens 40-Year Friendship 

position voyager 1 und 2

NASA Selects Commercial Service Studies to Enable Mars Robotic Science

NASA’s Boeing Crew Flight Test astronauts Butch Wilmore and Suni Williams prepare for their mission in the company’s Starliner spacecraft simulator at the agency’s Johnson Space Center in Houston.

NASA’s Commercial Partners Deliver Cargo, Crew for Station Science

Flooding on the Souris River

International SWOT Mission Can Improve Flood Prediction

NASA Is Helping Protect Tigers, Jaguars, and Elephants. Here’s How.

NASA Is Helping Protect Tigers, Jaguars, and Elephants. Here’s How.

Two Small NASA Satellites Will Measure Soil Moisture, Volcanic Gases

Two Small NASA Satellites Will Measure Soil Moisture, Volcanic Gases

C.26 Rapid Mission Design Studies for Mars Sample Return Correction and Other Documents Posted

C.26 Rapid Mission Design Studies for Mars Sample Return Correction and Other Documents Posted

NASA Selects Students for Europa Clipper Intern Program

NASA Selects Students for Europa Clipper Intern Program

The Big Event, 2024

The Big Event, 2024

This image of the Andromeda galaxy uses data from NASA’s retired Spitzer Space Telescope. Multiple wavelengths are shown, revealing stars (in blue and cyan), dust (red), and areas of star formation. Dust swirls around like water going down a drain, as the black hole at the heart of the Andromeda consumes it.

NASA Images Help Explain Eating Habits of Massive Black Hole

position voyager 1 und 2

NASA Licenses 3D-Printable Superalloy to Benefit US Economy

Illustration showing several future aircraft concepts flying over a mid-sized city with a handful of skyscrapers.

ARMD Solicitations

A man talks at a podium in an aircraft hangar.

NASA’s Commitment to Safety Starts with its Culture

blue glow emanates from a ring-like Hall-effect Thruster

Tech Today: NASA’s Ion Thruster Knowhow Keeps Satellites Flying

A stack of computer components on a white background - CGI

Big Science Drives Wallops’ Upgrades for NASA Suborbital Missions

The 2024 App Development Challenge top teams in front of the Orion Capsule in the Space Vehicle Mockup Facility at NASA’s Johnson Space Center in Houston.

NASA Challenge Gives Artemis Generation Coders a Chance to Shine

Community college students

NASA Community College Aerospace Scholars

Official headshot of an Iranian woman with short hair, wearing a gray blazer over a blue and white blouse, with an American flag and a NASA flag in the background.

Johnson Celebrates AA and NHPI Heritage Month: Kimia Seyedmadani

The Group 19 NASA and Japan Aerospace Exploration Agency astronaut candidates pose for a group photo – front row, Robert L. Satcher, left, Dorothy “Dottie” M. Metcalf-Lindenburger, Christopher J. Cassidy, Richard R. Arnold, Randolph J. Bresnik, and Thomas H. Marshburn; back row, Akihiko “Aki” Hoshide, left, Shannon Walker, Joseph M. Acaba, James P. Dutton, R. Shane Kimbrough, Satoshi Furukawa, José M. Hernández, and Naoko Yamazaki

20 Years Ago: NASA Selects its 19th Group of Astronauts

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

Voyager 1 and 2.

This artist's concept of the Voyager spacecraft with its antennapointing to Earth.

Inside NASA's 5-month fight to save the Voyager 1 mission in interstellar space

Artist's concept depicts NASA's Voyager 1 spacecraft entering interstellar space.

After working for five months to re-establish communication with the farthest-flung human-made object in existence, NASA announced this week that the Voyager 1 probe had finally phoned home.

For the engineers and scientists who work on NASA’s longest-operating mission in space, it was a moment of joy and intense relief.

“That Saturday morning, we all came in, we’re sitting around boxes of doughnuts and waiting for the data to come back from Voyager,” said Linda Spilker, the project scientist for the Voyager 1 mission at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We knew exactly what time it was going to happen, and it got really quiet and everybody just sat there and they’re looking at the screen.”

When at long last the spacecraft returned the agency’s call, Spilker said the room erupted in celebration.

“There were cheers, people raising their hands,” she said. “And a sense of relief, too — that OK, after all this hard work and going from barely being able to have a signal coming from Voyager to being in communication again, that was a tremendous relief and a great feeling.”

Members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20.

The problem with Voyager 1 was first detected in November . At the time, NASA said it was still in contact with the spacecraft and could see that it was receiving signals from Earth. But what was being relayed back to mission controllers — including science data and information about the health of the probe and its various systems — was garbled and unreadable.

That kicked off a monthslong push to identify what had gone wrong and try to save the Voyager 1 mission.

Spilker said she and her colleagues stayed hopeful and optimistic, but the team faced enormous challenges. For one, engineers were trying to troubleshoot a spacecraft traveling in interstellar space , more than 15 billion miles away — the ultimate long-distance call.

“With Voyager 1, it takes 22 1/2 hours to get the signal up and 22 1/2 hours to get the signal back, so we’d get the commands ready, send them up, and then like two days later, you’d get the answer if it had worked or not,” Spilker said.

A Titan/Centaur-6 launch vehicle carries NASA's Voyager 1 at the Kennedy Space Center on Sept. 5, 1977.

The team eventually determined that the issue stemmed from one of the spacecraft’s three onboard computers. Spilker said a hardware failure, perhaps as a result of age or because it was hit by radiation, likely messed up a small section of code in the memory of the computer. The glitch meant Voyager 1 was unable to send coherent updates about its health and science observations.

NASA engineers determined that they would not be able to repair the chip where the mangled software is stored. And the bad code was also too large for Voyager 1's computer to store both it and any newly uploaded instructions. Because the technology aboard Voyager 1 dates back to the 1960s and 1970s, the computer’s memory pales in comparison to any modern smartphone. Spilker said it’s roughly equivalent to the amount of memory in an electronic car key.

The team found a workaround, however: They could divide up the code into smaller parts and store them in different areas of the computer’s memory. Then, they could reprogram the section that needed fixing while ensuring that the entire system still worked cohesively.

That was a feat, because the longevity of the Voyager mission means there are no working test beds or simulators here on Earth to test the new bits of code before they are sent to the spacecraft.

“There were three different people looking through line by line of the patch of the code we were going to send up, looking for anything that they had missed,” Spilker said. “And so it was sort of an eyes-only check of the software that we sent up.”

The hard work paid off.

NASA reported the happy development Monday, writing in a post on X : “Sounding a little more like yourself, #Voyager1.” The spacecraft’s own social media account responded , saying, “Hi, it’s me.”

So far, the team has determined that Voyager 1 is healthy and operating normally. Spilker said the probe’s scientific instruments are on and appear to be working, but it will take some time for Voyager 1 to resume sending back science data.

Voyager 1 and its twin, the Voyager 2 probe, each launched in 1977 on missions to study the outer solar system. As it sped through the cosmos, Voyager 1 flew by Jupiter and Saturn, studying the planets’ moons up close and snapping images along the way.

Voyager 2, which is 12.6 billion miles away, had close encounters with Jupiter, Saturn, Uranus and Neptune and continues to operate as normal.

In 2012, Voyager 1 ventured beyond the solar system , becoming the first human-made object to enter interstellar space, or the space between stars. Voyager 2 followed suit in 2018.

Spilker, who first began working on the Voyager missions when she graduated college in 1977, said the missions could last into the 2030s. Eventually, though, the probes will run out of power or their components will simply be too old to continue operating.

Spilker said it will be tough to finally close out the missions someday, but Voyager 1 and 2 will live on as “our silent ambassadors.”

Both probes carry time capsules with them — messages on gold-plated copper disks that are collectively known as The Golden Record . The disks contain images and sounds that represent life on Earth and humanity’s culture, including snippets of music, animal sounds, laughter and recorded greetings in different languages. The idea is for the probes to carry the messages until they are possibly found by spacefarers in the distant future.

“Maybe in 40,000 years or so, they will be getting relatively close to another star,” Spilker said, “and they could be found at that point.”

position voyager 1 und 2

Denise Chow is a reporter for NBC News Science focused on general science and climate change.

position voyager 1 und 2

Where ARE NASA's Voyager 1 and 2 probes in deep space?

  • Voyager 2 is more than 12.3 billion miles (19.9 billion kilometers) away from Earth
  • The probe was unable to receive commands or transmit data back to Earth
  • Launched in 1977, it was the second man-made object to enter interstellar space

It is humanity's second most distant spacecraft, trailing only its twin in how far it has ventured from Earth.

But the legendary Voyager 2 gave NASA engineers a scare last month when an embarrassing case of human error saw the US space agency lose contact with the 46-year-old probe.

A wrong command was sent to the spacecraft, causing it to point its antenna just two degrees away from Earth but enough for NASA to 'lose' Voyager 2's position in space.

However, yesterday the space agency said a 'heartbeat' signal had been picked up during a regular scan of the sky .

This confirmed Voyager 2 was alive and operating - but where exactly in space is the probe and its twin Voyager 1? MailOnline takes a look.

Where is Voyager 2?

Voyager 2 is currently in the constellation of Pavo, more than 12.3 billion miles (19.9 billion kilometres) away from Earth.

This means it takes two days for engineers to send a message to the spacecraft and get a response.

Over the past five decades it has raced past the planets in our solar system, breezed beyond the Kuiper Belt and ultimately reached the beginning of the edge of our solar system.

Having escaped the heliosphere, the protective bubble of particles and magnetic fields generated by the sun, the spacecraft and its twin are now exploring where nothing from Earth has flown before.

Voyager 2 entered interstellar space — the region between stars, filled with material ejected by the death of nearby stars millions of years ago — on November 5, 2018. 

Despite this, neither of the probes are technically considered to be outside of the solar system. 

Scientists see the final boundary as the Oort Cloud, a collection of small objects still under the influence of the sun's gravity.

NASA has said it would take about 300 years for Voyager 2 to reach the inner edge of the Oort Cloud, and possibly 30,000 years to fly beyond it, both well beyond its lifespan.

Where is Voyager 1?

Voyager 1 is currently in the constellation of Ophiucus, more than 14.8 billion miles (23.8 billion kilometres) away from Earth.

It is currently moving at 38,000mph and has been travelling for 45 years and almost 11 months.

Voyager 1 made its historic entry into interstellar space in August 2012. 

When were they launched?

Both Voyagers launched from Cape Canaveral in Florida in 1977 — with Voyager 2 departing a month earlier than 1 — and were designed to last five years to study Jupiter and Saturn.

They have far exceeded that, however, having been travelling for 46 years. 

Each spacecraft carries a Golden Record with Earth's sounds, pictures, and messages intended to communicate a story of Earth to any extra-terrestrials who may discover them.

RECORDS SET BY THE VOYAGERS

-  In 2012, Voyager 1 became the only spacecraft to have entered interstellar space

- Voyager 2 is the only spacecraft to have flown by all four outer planets - Jupiter, Saturn, Uranus and Neptune

- Their numerous planetary encounters include discovering the first active volcanoes beyond Earth, on Jupiter's moon Io, and hints of a subsurface ocean on Jupiter's moon Europa

- They also discovered the most Earth-like atmosphere in the solar system, on Saturn's moon Titan; the jumbled-up, icy moon Miranda at Uranus; and icy-cold geysers on Neptune's moon Triton

The 12-inch copper disk contains a variety of natural sounds, such as waves, wind, thunder, birds, whales and other animals.

It also has a message from Jimmy Carter, who was the US president when the two spacecraft were launched.

'This is a present from a small, distant world, a token of our sounds, our science, our images, our music, our thoughts and our feelings', he said.

'We are attempting to survive our time so we may live into yours.'

It also contains a solar location map of Earth so future civilisations could find our planet. 

What is the point of the probes?

They were launched to explore all the giant planets of our outer solar system: Jupiter, Saturn, Uranus and Neptune; 48 of their moons; and the unique system of rings and magnetic fields those planets possess.

The Voyagers gave mankind its closest look at the moons of Jupiter and Saturn, while their string of discoveries also included active volcanoes on Jupiter's moon Io and a study of the intricacies of Saturn's rings.

Voyager 2 is still the only spacecraft to have visited Uranus and Neptune. 

Thirteen days into its mission, after reaching a distance of 7.25 million miles, Voyager 1 turned its camera back toward Earth and snapped the first ever photograph of the Earth-moon system in a single frame.

It would also later capture our planet as a tiny dot, having just passed Uranus on February 14, 1990.

Four years later the astronomer Carl Sagan reflected on the significance of the photograph to an audience at Cornell University, famously coining its name as the 'Pale Blue Dot', and giving one of the most widely published speeches of all time.

How far will they go?

Now approaching half a century in age, the Voyagers are in the latter stages of their lives.  

Both craft are to be powered down over the next few years, potentially as soon as 2025. 

However, the hope is that by turning off some of the Voyagers' systems this will eek out the spacecrafts' remaining power to extend their journeys to about 2030. 

The two probes are powered by radioisotope thermoelectric generators (RTGs) – which are powered by the heat from decaying spheres of plutonium.

However, the output of these RTGs is decreasing by about four watts every year, which means the instruments on both Voyagers are being turned off one by one.

Voyager 1 now has just four functioning instruments left, while Voyager 2 has five.

Some estimate that they could come to the end of their life as early as 2025, with the plutonium powering the spacecraft decaying beyond what is necessary to keep them going.

However, others are more optimistic and think the Voyagers could yet continue into the next decade.

Does that mean they can reach another star?

No. It would take 40,000 years for Voyager 1 to close in on a star in the Camelopardalis constellation, while Voyager 2 would take about the same length of time to reach one in the constellation of Andromeda.

So neither these probes nor the New Horizons spacecraft that imaged Pluto in 2015 have the capability to travel anywhere close to another star.

Alpha Centauri is the nearest star and planetary system to Earth. However, with current technology it would take a human about 6,000 years to cover the distance of 4.37 light-years to reach it.

THE BACKGROUND TO NASA'S HISTORIC VOYAGER MISSION

The Voyager spacecraft were built by NASA's Jet Propulsion Laboratory in Pasadena, California, which continues to operate both. 

NASA launched the Voyager 1 spacecraft on September 5 1977, and the Voyager 2 on August 20 1977.

Each spacecraft carries a golden record on board – a record that includes sounds, pictures and messages of Earth.

Continuing on their more than 37-year journey since their 1977 launches, they each are much farther away from Earth and the sun than Pluto. 

In August 2012, Voyager 1 made the historic entry into interstellar space, the region between stars, filled with material ejected by the death of nearby stars millions of years ago. 

Voyager 2 entered interstellar space on November 5, 2018. 

Both spacecraft are still sending scientific information about their surroundings through the Deep Space Network, or DSN.

The primary mission was the exploration of Jupiter and Saturn. 

The mission was extended after making a string of discoveries there — such as active volcanoes on Jupiter's moon Io and the intricacies of Saturn's rings. 

Voyager 2 went on to explore Uranus and Neptune and is still the only spacecraft to have visited those outer planets. 

The adventurers' current mission, the Voyager Interstellar Mission (VIM), will explore the outermost edge of the Sun's domain — and beyond.

 Source: NASA

MailOnline logo

Voyager-Sonden: Interstellarer Raum noch seltsamer als gedacht

Zum zweiten mal verließ 2018 eine raumsonde jenen bereich, der uns vom rest der galaxie trennt – und erlebte erstaunliches..

Eine Illustration zeigt die Positionen von Voyager 1 und 2 jenseits der Heliosphäre – einem schützenden ...

In der Schwärze des Weltalls, Milliarden Kilometer von zu Hause entfernt, hat die NASA-Sonde Voyager 2 einen Meilenstein der Weltraumforschung passiert: Im November 2018 wurde sie zum zweiten Raumfahrzeug der Geschichte, das den interstellaren Raum erreicht hat. Anlässlich des Jahrestags dieser Leistung haben Wissenschaftler offenbart, was genau Voyager 2 gesehen hat, als sie die galaktische Schwelle überquerte. Die Ergebnisse vermitteln uns einen neuen Einblick in einige der größten Mysterien unseres Sonnensystems.

In insgesamt fünf Studien, die in „Nature Astronomy“ erschienen, legen die Forscher dar, wie die Raumsonde zum ersten Mal Proben der elektrisch geladenen Plasmen sammelte, die sowohl den interstellaren Raum als auch die Randbereiche des Sonnensystems ausfüllen. Die Analyse ist eine weitere Premiere für Voyager 2, die im Jahr 1977 gestartet wurde und als erste und bisher einzige Sonde an den Eisriesen Uranus und Neptun vorbeiflog.

Voyager 2 folgte ihrer Schwestersonde Voyager 1 in den interstellaren Raum. Letztere erreichte diesen schon 2012. Die Daten der zwei Raumsonden weisen zahlreiche Übereinstimmungen auf, beispielsweise die Dichte der Partikel, die sie im interstellaren Raum gemessen haben. Spannenderweise entdeckten die beiden Sonden auf ihrem Weg aus dem Sonnensystem aber auch ein paar deutliche Unterschiede, die neue Fragen über die Bewegung unserer Sonne durch die Galaxie aufwerfen.

„Es war wirklich eine wundervolle Reise“, sagte der Voyager-Projektwissenschaftler Ed Stone – ein Physiker am Caltech – bei einem Pressebriefing.

„Es ist einfach aufregend, dass die Menschheit jetzt interstellar ist“, findet auch der Physiker Jamie Rankin. Der Forscher an der Princeton University war an den aktuellen Studien nicht beteiligt. „Wir sind schon seit der Grenzüberschreitung von Voyager 1 interstellare Reisende. Aber die Überquerung von Voyager 2 ist jetzt sogar noch aufregender, weil wir nun zwei sehr verschiedene Orte im interstellaren Medium miteinander vergleichen können.“

Die im August und September 1977 gestarteten NASA-Sonden Voyager 1 und 2 erschlossen neue Welten für ...

Im Inneren der Heliosphäre

Damit die jüngsten Daten von Voyager 2 Sinn ergeben, muss man sich ins Gedächtnis rufen, dass die Sonne kein unbewegter Stern ist, der still und leise vor sich hin brennt. Das Zentrum unseres Sonnensystems ist ein nuklearer Brennofen, der mit etwa 725.000 Kilometern pro Stunde durch die Galaxie rast.

Rund um die Sonne erstrecken sich unsichtbare und dynamische Magnetfeldlinien. Entlang dieser Linien entweichen konstant elektrisch geladene Partikel aus dem äußeren Bereich der Sonne. Diese Plasmaströme werden als Sonnenwinde bezeichnet. Sie bereiten sich im gesamten Sonnensystem aus und erreichen früher oder später das interstellare Medium – jene Strahlung, Magnetfelder und Partikel, die beim Urknall und den ersten Sternenexplosionen hinfort geschleudert wurden und im Raum zwischen den heutigen Sternen noch vorhanden sind.

Wissen kompakt: Dunkles Universum

Genau wie Öl und Wasser vermischen sich die Sonnenwinde und das interstellare Medium nicht einwandfrei. Stattdessen formen die Sonnenwinde in dem Medium eine Blase, die wir als Heliosphäre bezeichnen. Basierend auf den Daten der Voyager-Sonden erstreckt sich diese Blase von der Sonne aus etwa 18 Milliarden Kilometer weit. Damit befinden sich sowohl die Sonne wie auch alle acht Planeten und viele der äußeren Objekte unseres Sonnensystems innerhalb ihrer Grenzen. Einer der Vorteile der Heliosphäre besteht darin, dass sie alles in ihrem Inneren – beispielsweise unserer empfindliche DNA – vor einem Großteil der kosmischen Strahlung schützt.

Am äußersten Rand der Heliosphäre, den man als Heliopause bezeichnet, beginnt der interstellare Raum. Ein besseres Verständnis für diesen Grenzbereich bedeutet auch, dass wir den Weg der Sonne durch die Galaxie besser verstehen können – und damit die Situation anderer Sterne im Kosmos.

„Wir versuchen, die Natur dieser Schwelle zu begreifen, an der sich diese beiden Winde treffen und vermischen“, sagte Stone während des Briefings. „Wie genau vermischen sie sich, wie viel schwappt aus dem Inneren der Blase hinaus und von außen herein?“

Die Crewmitglieder Gernot Grömer und João Lousada stehen im Habitatmodul der Kepler Station, einer temporären Basis ...

Einen ersten genaueren Blick konnten die Wissenschaftler am 25. August 2012 auf die Heliopause werfen. Damals trat Voyager 1 gerade in den interstellaren Raum ein. Was sie sahen, sorgte für einige Verwirrung. Beispielsweise wissen die Forscher nun, dass das interstellare Magnetfeld etwa doppelt bis dreimal stärker ist als erwartet. Das wiederum bedeutet, dass die interstellaren Partikel bis zu zehnmal mehr Druck auf unsere Heliosphäre ausüben als zuvor vermutet.

„Das ist unsere erste Möglichkeit, das interstellare Medium tatsächlich zu erleben. Für uns ist das also im wahrsten Sinne des Wortes ein Wegbereiter“, sagt der Heliophysiker Patrick Koehn, ein Programmwissenschaftler am Hauptquartier der NASA.

Schwammiger Grenzbereich

So sehr Voyager 1 auch mit den Erwartungen gebrochen hat, so unvollständig waren ihre Offenbarungen. Schon in den Achtzigern erlitt das Instrument der Sonde, welches die Temperatur von Plasma messen sollte, eine Fehlfunktion und ist seither defekt. Dasselbe Instrument an Bord von Voyager 2 funktioniert allerdings noch. Als die Sonde am 5. November 2018 die Heliopause überquerte, erhielten die Wissenschaftler einen deutlichen detaillierteren Blick auf diesen Grenzbereich.

Zum ersten Mal konnten sie sehen, was geschieht, wenn ein Objekt sich der Heliopause auf 225 Millionen Kilometern nähert: Das Plasma rund um das Objekt verlangsamt sich, heizt sich auf und wird dichter. Auf der anderen Seite der Grenze ist das interstellare Medium fast 30.000 Grad heiß und damit deutlich heißer als erwartet. Allerdings ist dieses Plasma so dünn und diffus, dass die Durchschnittstemperatur rund um Voyager trotzdem beachtlich gering ist.

Galerie: Ultima Thule: Der bislang entfernteste Besuch von der Erde

Vor dem Vorbeiflug kombinierten Wissenschaftler zwei Bilder von 2014 MU69, die New Horizons mit ihrem Bordteleskop ...

Darüber hinaus konnte Voyager 2 bestätigen, dass Plasma von beiden Seiten der Heliopause in die jeweils andere Seite übertritt. Bevor Voyager 1 die Heliopause durchquerte, flog sie durch Ausläufer interstellarer Partikel, die sich ihren Weg in die Heliopause gebahnt hatten wie Baumwurzeln, die durch Gestein hindurchwachsen. Voyager zwei hingegen beobachtete eher ein Rinnsal niederenergetischer Teilchen, das sich mehr als 160 Millionen Kilometer jenseits der Heliopause erstreckte.

Ein weiteres Mysterium tat sich auf, als Voyager 1 sich der Heliopause auf etwa 1,3 Milliarden Kilometer genähert hatte. Dort trat die Sonde in einen vergleichsweise statischen Bereich ein, in dem sich der Sonnenwind enorm verlangsamte. Voyager 2 beobachtete vor ihrer Durchquerung der Heliopause einen völlig anderen Bereich, der aber ungefähr genauso mächtig war wie der vergleichsweise statische Bereich, den Voyager 1 durchquert hatte.

„Das ist ziemlich, ziemlich seltsam“, sagte Koehn. „Das zeigt uns wirklich, dass wir mehr Daten brauchen.“

Interstellare Folgemission?

Um dieses Rätsel zu lösen, benötigen die Wissenschaftler ein besseres Gesamtbild der Heliosphäre. Ihre Form ist aufgrund von fehlenden Daten weiterhin unbekannt. Womöglich ist sie durch den Druck des interstellaren Mediums ungefähr sphärisch. Genauso gut ist es aber möglich, dass sie einen Schweif besitzt wie ein Komet oder eher wie ein Croissant geformt ist.

Derzeit sind zwar bereits andere Raumsonden auf dem Weg aus dem Sonnensystem hinaus, allerdings werden sie keine Daten von der Heliopause senden können. Die NASA-Sonde New Horizons bewegt sich mit mehr als 50.000 km/h durch das Sonnensystem. Wenn ihr in den 2030ern die Energie ausgehen wird, versiegt auch der Datenstrom der Sonde zur Erde – mehr als 1,6 Milliarden Kilometer vom äußeren Rand der Heliosphäre entfernt. Darum möchten Wissenschaftler eine weitere interstellare Sonde auf den Weg bringen. Das Ziel: Eine 50 Jahre dauernde und mehrere Generationen überspannende Mission, welche die äußeren Regionen des Sonnensystems erforscht und in unbekannte Bereiche jenseits des Sonnenwinds vorstößt.

Eine Illustration zeigt die Parker Solar Probe der NASA bei ihrem Anflug an die Sonne.

„Wir haben hier eine ganze Blase, die wir bisher nur an zwei Punkten durchschritten haben“, sagte der Co-Autor der Studien, Stamatios Krimigis beim Briefing. Krimigis ist der emeritierte Leiter des Weltrauminstituts für angewandte Physik an der Johns Hopkins University. „Zwei Beispiele reichen nicht.“

Eine neue Generation von Forschern ist erpicht darauf, die Aufgabe von ihren Vorgängern fortzuführen. Unter ihnen befindet sich auch Rankin, die ihre Doktorarbeit am Caltech über die interstellaren Daten von Voyager 1 geschrieben hat – mit Stone als Doktorvater.

„Es war einfach unglaublich, mit diesen topaktuellen Daten von Raumsonden zu arbeiten, die vor meiner Geburt starteten und noch immer große Beiträge zur Wissenschaft leisten“, sagt sie. „Ich bin sehr dankbar für all die Menschen, die Voyager so viel Zeit gewidmet haben.“

Der Artikel wurde ursprünglich in englischer Sprache auf NationalGeographic.com veröffentlicht.

position voyager 1 und 2

Drama am Schwarzen Loch: Einstein im Zentrum der Galaxie

position voyager 1 und 2

Wodurch entstehen Lichtsäulen in der Atmosphäre?

position voyager 1 und 2

Aufnahmen: Wenn zwei Galaxien zusammenstoßen

  • Wissenschaft
  • physikalische Wissenschaften

' class=

Voyager 1 & 2

  • Launched on September 5, 1977
  • Surveyed the Jupiter and Saturn systems
  • First spacecraft to reach interstellar space
  • RTGs still operating
  • Currently exploring beyond our solar system
  • Launched on August 20, 1977
  • Only spacecraft to visit Jupiter, Saturn, Uranus and Neptune
  • Currently exploring the edge of the solar system

Each powered by:

  • 3 Multi-Hundred Watt (MHW) RTGs stacked in a series on a boom, producing about 158 W e each, at launch.

Voyager 2 is the only spacecraft to have visited all four giant planets, and the only one to have flown past distant Uranus and Neptune.

As the electrical power decreases, power loads on the spacecraft must be turned off in order to avoid having demand exceed supply. As loads are turned off, some spacecraft capabilities are eliminated.

Voyager Goals & Accomplishments

Voyager 1 and 2 were designed to take advantage of a rare planetary alignment to explore the outer solar system. Voyager 1 targeted Jupiter and Saturn before continuing on to chart the far edges of our solar system. Voyager 2 targeted Jupiter, Saturn, Uranus and Neptune before joining its sister probe on their interstellar mission.

Voyager proved to be one of the greatest missions of discovery in history. Among their many revelations about the solar system are:

  • Rings around Jupiter
  • Volcanoes on Jupiter's moon Io
  • Moons of Saturn that shepherd its rings
  • New moons around Uranus and Neptune
  • Geysers of liquid nitrogen on Neptune's moon Triton
  • Revealed and crossed the farthest boundary of our solar system

Voyager 2 is the only spacecraft to study all four of the solar system's giant planets at close range. The Voyagers are now exploring the outermost reaches of our sun's influence, where the solar wind mixes with the interstellar wind of our galaxy. Their long-lived power source has enabled these explorers to continue teaching us about our solar system for more than years after they left earth.

  • Go to Voyager Homepage
  • Go to Voyager Image Gallery
  • Status: Where are the Voyagers?

Mission Elapsed Time

Voyager 1 was in crisis in interstellar space. NASA wouldn’t give up.

NASA engineers spent months doggedly trying to fix a computer on Voyager 1, a spacecraft launched in the 1970s that’s now exploring interstellar space.

position voyager 1 und 2

For the past six months a team of engineers at NASA’s Jet Propulsion Laboratory has been trying to fix a glitchy computer. Three things make the repair job challenging:

The computer is highly customized and unlike anything on the market today.

It was built in the 1970s.

And it is 15 billion miles away.

The computer is on Voyager 1, the most distant human-made spacecraft ever launched. Far beyond the orbit of Pluto, it is riding point for all humanity as it hurtles through interstellar space.

But on Nov. 14, Voyager 1 suddenly stopped sending any data back to Earth. While it remained in radio contact, the transmission had, as NASA engineers put it, “flatlined.” So began the greatest crisis in the history of the fabled Voyager program.

Voyager 1 and its twin, Voyager 2, launched in 1977 and in the years that followed obtained stunning close-up images of Jupiter and Saturn. Voyager 2 also flew by Uranus and Neptune and is the only spacecraft to have visited those ice giants. The Voyagers blew past the heliopause, where the solar wind abates and interstellar space begins, and continued to send back science data about particles and magnetic fields in a realm never before visited.

The two Voyagers are powered by the radioactive decay of plutonium-238, and in the near future that power source will be too feeble to keep the spacecraft warm and functioning. But for now, they have operational scientific instruments that are sending back otherwise unobtainable data on the composition of space beyond the heliopause.

Fixing Voyager 1 quickly became a priority for NASA, and especially for Jeffrey Mellstrom, who has been at JPL in Pasadena for 35 years and is the chief engineer in the astronomy and physics directorate.

Mellstrom took on the challenge even as he planned for retirement in the spring. In January, Mellstrom told a colleague, “The one thing I’m going to regret is if I retire before we solve Voyager 1’s problem.”

Like kicking a vending machine

After initial attempts to resolve the issue went nowhere, JPL leadership created a “tiger team” made of a multigenerational crew of engineers, some of them veterans of the lab and some born long after the Voyagers launched.

“We didn’t know how to solve this in the beginning because we didn’t know what’s wrong,” said Mellstrom, the team’s leader.

Voyager 1 has three computers. One is the attitude and articulation control system, which makes sure the spacecraft is pointed in the right direction. Another is the command control system, which handles the commands coming from Earth. The third is the flight data subsystem, which takes science and engineering data and packages it for transmission home.

Something had gone wrong somewhere in that trio of computers. Maybe a “cosmic ray” — a particle from deep space — had smashed into a computer chip. Or maybe a piece of hardware just got so old it ceased to work.

“All we had was incoherent data, garbled data,” said Suzanne Dodd, the Voyager project manager since 2010. Dodd has been at JPL for four decades, and in her early years she wrote computer code for Voyager 2’s encounters with Uranus and Neptune. She vividly remembers that first close-up look of Neptune and an image of the ice giant with its huge moon Triton in the background.

“We didn’t know what part of the spacecraft was involved with this,” Dodd said.

So they poked it. They sent commands to Voyager 1, trying to jolt it back to coherence. The team had a list of potential failures and figured that one of the commands might have the equivalent effect of kicking a vending machine.

Here is where the troubleshooting encountered an inviolable obstacle: the speed of light. Even at 186,000 miles per second, a command sent to Voyager 1 would take 22½ hours to arrive. Then the engineers would have to wait another 22½ hours for the spacecraft to send a response.

The planet Earth is kind of a pain, too, because it spins inconveniently on its axis and moves restlessly around the sun. To communicate with distant spacecraft, NASA relies on the Deep Space Network, three arrays of huge radio telescopes in California, Spain and Australia. The idea is that, regardless of Earth’s movement, at least one array can be pointed toward a spacecraft at almost any time.

The tiger team developed a pattern of sending a command on a Friday and waiting for the return signal on Sunday. Some dark days and weeks followed.

“None of those commands that we sent were able to make any discernible difference whatsoever,” said David Cummings, an advanced flight software designer and developer.

In late February, the team sent a series of commands to prod the flight data subsystem to place software in each of 10 different “data modes.” The team waited, hoping for a breakthrough. After two days, Voyager responded — still without data. Engineer Greg Chin circulated a technical chart and summarized the situation: “So, at this time, no joy.”

“It was unbelievably depressing,” Cummings said. “Luckily the story doesn’t end there.”

Cracking the code

Just a day after the “no joy” email, the team felt a surge of optimism.

JPL has specialists in radio transmissions, and they noticed that in some “modes” the return signal from Voyager 1 had been modulated in a pattern consistent with the flight subsystem computer producing data, though not in any normal format. The modulation suggested that the processor was functioning and supported the team’s conjecture that some of the memory had been corrupted.

“That was huge,” Cummings said. “The processor was not dead.”

Painstakingly, the team at last tracked down the origin of the problem: a bad memory chip holding one bit — the smallest unit of binary data — for each of 256 contiguous words of memory.

The flight data subsystem was built with 8K memory, or more exactly 8,192 bytes. (A modern smartphone has something like 6G memory, or 6 billion bytes.)

The engineers came up with a plan: They would move the software to different parts of the flight data subsystem memory. Unfortunately they couldn’t just move the 256 words in a single batch, because there was no place roomy enough for all of it. They had to break it down into pieces. And they’d have to proofread everything. It was tedious, error-prone work.

Cummings called a young JPL flight software engineer named Armen Arslanian: “Do you want to help me relocate Voyager code?”

Arslanian was the right person for the job. Just six years out of college, he knew how to write code for spacecraft, and he knew how to deal with “assembly language,” the coding that underlies the common languages used by programmers today. That’s the language of Voyager’s 1970s-era computers.

“I ended up needing that skill,” Arslanian said.

The JPL teams had documentation from the 1970s describing the function of the software, but often the descriptions were contingent on other information that could not be found. The team also lacked the tools to verify their coding. They had to do everything essentially by hand. It wasn’t like trying to find a needle in a haystack so much as like trying to examine every piece of hay for possible flaws.

The team prioritized the software for the engineering data so that they could fully restore communication with the spacecraft. If that worked, they could fix the science data later.

On April 18, the team sent a package of commands to the spacecraft and then waited. Two days later the spacecraft sent back the first intelligible engineering data in more than five months.

There is more work to be done, but the end is in sight. The engineers are still working on transferring the code that controls the scientific data. But they know how to do this. They found the problem, figured out the workaround and are just grinding through the code transfer.

Mellstrom and Dodd are fully confident that Voyager 1 has been saved. Mellstrom said he can retire without regret.

“The spacecraft is working,” Dodd said. “Go Voyager!”

An earlier version of this story incorrectly said Jeffrey Mellstrom and Suzanne Dodd are married. They are married to other people. This story has been corrected.

position voyager 1 und 2

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now

Frequently Asked Questions

  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

Can the Voyager imaging cameras be turned back on?

What instruments on the spacecraft are still working and what have been turned off?

How long can Voyager 1 and 2 continue to function?

Voyager 1 is expected to keep its current suite of science instruments on through 2021. Voyager 2 is expected to keep its current suite of science instruments on through 2020.

The radioisotope thermoelectric generator on each spacecraft puts out 4 watts less each year. Because of this diminishing electrical power, the Voyager team has had to prioritize which instruments to keep on and which to turn off. Heaters and other spacecraft systems have also been turned off one by one as part of power management.

The Voyager team has chosen to keep operating the instruments that are the most likely to send back key data about the heliosphere and interstellar space -- the fields and particles instruments. Engineers expect to begin turning off fields and particles science instruments one by one, starting in 2020 for Voyager 2. Voyager 2 will have to start turning science instruments off sooner because it is currently operating one more instrument than Voyager 1. Engineers expect each spacecraft to continue operating at least one science instrument until around 2025.

Even if science data won't likely be collected after 2025, engineering data could continue to be returned for several more years. The two Voyager spacecraft could remain in the range of the Deep Space Network through about 2036, depending on how much power the spacecraft still have to transmit a signal back to Earth.

Where are Voyager 1 and 2 today? How do they compare to other spacecraft on an outbound trajectory?

Where is Voyager 1 going? When will it get there? How about Voyager 2?

Where do we consider our solar system to end; Pluto's orbit? Solar apex?

Have any human-made objects ever exited the solar system?

Are the distance counters rolling backwards?

Did either of the Voyagers visit Pluto? Why didn't the Voyagers fly by Pluto?

When we send spacecraft through the asteroid belt to the outer planets, how do we navigate the craft through the belt?

I was reading Dr. Carl Sagan's biography recently and found that he persuaded NASA administrators to turn one of the Voyager space probes around in order to take a last image of the solar system. Is this true? Do the craft send back any images of where they are?

I can not locate a copy of the Murmurs of Earth CD. Would you know of a vendor that might sell copies of it?

Who was on the committee with Dr. Sagan regarding the development of the Golden Record? Both American or foreign scientists?

If there is intelligent life in our universe and they were not a peace loving species, wouldn't the information on the Voyager be enough to destroy human kind?

What were the most important discoveries of the Voyager space probes?

How big is Voyager? How much does it weigh?

Is it true that a sketch by Da Vinci is included in the "Message to the Universe" of Voyagers 1 and 2?

What kind of computers are used on the Voyager spacecraft?

How fast are the Voyager computers?

What is the "direction" (constellation and/or star) both VOYAGER 1 & 2 and the Pioneers are "aimed" for, at present.

Where can I find pictures of what the Voyager spacecraft took?

Is there some sort of plate with pictograms on the Voyager 1 spacecraft? Also is it similar to the Pioneer spacecraft plaque?

For IEEE Members

Ieee spectrum, follow ieee spectrum, support ieee spectrum, enjoy more free content and benefits by creating an account, saving articles to read later requires an ieee spectrum account, the institute content is only available for members, downloading full pdf issues is exclusive for ieee members, downloading this e-book is exclusive for ieee members, access to spectrum 's digital edition is exclusive for ieee members, following topics is a feature exclusive for ieee members, adding your response to an article requires an ieee spectrum account, create an account to access more content and features on ieee spectrum , including the ability to save articles to read later, download spectrum collections, and participate in conversations with readers and editors. for more exclusive content and features, consider joining ieee ., join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of spectrum’s articles, archives, pdf downloads, and other benefits. learn more →, join the world’s largest professional organization devoted to engineering and applied sciences and get access to this e-book plus all of ieee spectrum’s articles, archives, pdf downloads, and other benefits. learn more →, access thousands of articles — completely free, create an account and get exclusive content and features: save articles, download collections, and talk to tech insiders — all free for full access and benefits, join ieee as a paying member., how nasa is hacking voyager 1 back to life, engineers found space in the geriatric spacecraft’s memory to deal with a stuck bit.

illlustration of a disc with probes against a black background with white dots all around

Voyager 1 whizzes through interstellar space at 17 kilometers per second.

On 14 November 2023, NASA’s interstellar space probe Voyager 1 began sending gibberish back to Earth. For five months, the spacecraft transmitted unusable data equivalent to a dial tone.

In March, engineers discovered the cause of the communication snafu: a stuck bit in one of the chips comprising part of Voyager’s onboard memory. The chip contained lines of code used by the flight data subsystem (FDS), one of three computers aboard the spacecraft and the one that is responsible for collecting and packaging data before sending it back to Earth.

JPL engineers sent a command through the Deep Space Network on 18 April to relocate the affected section of code to another part of the spacecraft’s memory, hoping to fix the glitch in the archaic computer system. Roughly 22.5 hours later, the radio signal reached Voyager in interstellar space, and by the following day it was clear the command had worked. Voyager began returning useful data again on 20 April.

NASA engineers managed to diagnose and repair Voyager 1 from 24 billion kilometers away—all while working within the constraints of the vintage technology. “We had some people left that we could rely on [who] could remember working on bits of the hardware,” says project scientist Linda Spilker . “But a lot of it was going back through old memos, like an archeological dig to try and find information on the best way to proceed.”

Minuscule Memory

Voyager 1 and its twin, Voyager 2—which also remains operational—were launched nearly 50 years ago, in 1977, to tour the solar system. Both spacecraft far surpassed their original missions of visiting Jupiter and Saturn, and in 2012, entered interstellar space .

“That mission literally rewrote the textbooks on the solar system,” says Jim Bell , a planetary scientist at Arizona State University and author of a book recounting 40 years of the mission. “We’ve never sent anything out that far, so every bit of data they send back is new.” The 1960s and 1970s technology, on the other hand, is now ancient.

Decades after the tech went out of vogue, the FDS still uses assembly language and 16-bit words . “These are two positively geriatric spacecraft,” says Todd Barber , a propulsion engineer for Voyager. Working to fix the issues, he says, is “like palliative care.”

To first diagnose the issue, NASA’s engineers first tried turning on and off different instruments, says Spilker. When that proved unsuccessful, they initiated a full memory readout of the FDS. “That’s what led to us finding that piece of hardware that had failed and that 256-bit chunk of memory,” she says. In one chip, the engineers found a stuck bit, fixed at the same binary value. It became clear that the chip was irreparable, so the team had to identify and relocate the affected code.

However, no single location was large enough to accommodate the extra 256 bits. “The size of the memory was the biggest challenge in this anomaly,” says Spilker. Voyager’s computers each have a mere 69.63 kilobytes of memory.

To begin fixing the issue, the team searched for corners of Voyager’s memory to place segments of code that would allow for the return of engineering data, which includes information about the status of science instruments and the spacecraft itself. One way the engineers freed up extra space was by identifying processes no longer used. For example, Voyager was programmed with several data modes—the rate at which data is sent back to Earth—because the spacecraft could transmit data much faster when it was closer to Earth. At Jupiter, the spacecraft transmitted data at 115.2 kilobits per second; now, that rate has slowed to 40 bits per second, and faster modes can be overwritten. However, the engineers have to be careful to ensure they don’t delete code that is used by multiple data modes.

Having successfully returned engineering data, the team is working to relocate the rest of the affected code in the coming weeks. “We’re having to look a little harder to find the space and make some key decisions about what to overwrite,” says Spilker. When their work is completed, the Voyager team hopes to return new science data, though unfortunately, all data from the anomaly period was lost.

Built to Last

The cause of the stuck bit is a mystery, but it’s likely the chip either wore out with age or was hit by a highly energetic particle from a cosmic ray. Having entered interstellar space, “Voyager is out bathed in the cosmic rays,” Spilker says. Luckily, the spacecraft was built to take it, with its electronic components shielded from the large amount of radiation present at Jupiter. “That’s serving us quite well now in the interstellar medium.”

When Voyager was built, the 12-year trip to Uranus and Neptune alone was a “seemingly impossible goal for a 1977 launch,” says Barber. The longevity of Voyager is a testament of its engineering, which accounted for many contingencies and added redundancy. The mission also included several firsts, for example, as the first spacecraft with computers able to hold data temporarily using volatile CMOS memory. (An 8-track digital tape recorder onboard stores data when collected at a high rate.)

Importantly, it was also the first mission with a reprogrammable computer. “We take it for granted now,” Bell says, but before Voyager, it wasn’t possible to adjust software in-flight. This capability proved essential when the mission was extended, as well as when issues arise.

Going forward, the Voyager team expects to encounter additional problems in the aging spacecraft—though they hope to make it to the 50-year anniversary before the next one. “With each anomaly, we just learn more about how to work with the spacecraft and are just amazed at the capabilities that the engineers built into it using that 1960s and ’70s technology,” Spilker says. “It’s just amazing.”

  • 50 Years Later, This Apollo-Era Antenna Still Talks to Voyager 2 ›
  • Voyager 1 Hasn't Really Left The Solar System, But That's OK ›
  • Mission Status - Voyager ›
  • Voyager 1 ›

Gwendolyn Rak is a contributor to IEEE Spectrum .

Video Friday: Robot Bees

The new shadow hand can take a beating, commercial space stations approach launch phase, related stories, satellite radar sharpens ukraine dam collapse questions, the most hackable handheld ham radio yet, faster, more secure photonic chip boosts ai training.

IMAGES

  1. Then There Were Two: Voyager 2 Reaches Interstellar Space

    position voyager 1 und 2

  2. Down to Earth Science: Voyager I and II are leaving our Solar system

    position voyager 1 und 2

  3. Voyager 1 & 2 . The reason why they are the most…

    position voyager 1 und 2

  4. Voyager1 and 2

    position voyager 1 und 2

  5. Voyager

    position voyager 1 und 2

  6. L'incroyable voyage des sondes Voyager 1 et 2

    position voyager 1 und 2

VIDEO

  1. NASA-Sonde Voyager 2 spürt mysteriöse Magnetwand auf!

  2. Voyager 1 hat gerade bekannt gegeben, dass sie 300 unbekannte Objekte im Weltraum entdeckt hat!

  3. Voyager 1 Terrifying New Discovery After A year Of Silent

  4. Voyager 2 hat gerade neue Bilder aus dem Weltraum gesendet! Was wurde gefunden?

  5. Walter Adler: Der Kipplinger-Report Teil 1+2 (HR'84) SF-Hörspiel mit Charles Wirths #Kunstkopf

  6. Voyager 1 Sonde sendet seltsames Signal zur Erde

COMMENTS

  1. Voyager

    Note: Because Earth moves around the Sun faster than Voyager 1 or Voyager 2 is traveling from Earth, the one-way light time between Earth and each spacecraft actually decreases at certain times of the year. Cosmic Ray Data: This meter depicts the dramatic changes in readings by Voyager's cosmic ray instrument. The instrument detected a dip in ...

  2. Voyager

    Mission Overview. The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-40-year journey since their 1977 launches, they each are much farther away from Earth and the sun than Pluto. In August 2012, Voyager 1 made the historic entry into interstellar space, the region between ...

  3. Voyager 1 Tracker

    Voyager 1 live position and data. This page shows Voyager 1 location and other relevant astronomical data in real time. The celestial coordinates, magnitude, distances and speed are updated in real time and are computed using high quality data sets provided by the JPL Horizons ephemeris service (see acknowledgements for details). The sky map shown in the background represents a rectangular ...

  4. Voyager

    This is a real-time indicator of Voyager 1's distance from Earth in astronomical units (AU) and either miles (mi) or kilometers (km). Note: Because Earth moves around the sun faster than Voyager 1 is speeding away from the inner solar system, the distance between Earth and the spacecraft actually decreases at certain times of year.

  5. Mission Overview

    Rockets aren't the only thing we launch. give us feedback return to the main site. The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-45-year journey since their 1977 launches, they each are much farther away from Earth and the Sun than Pluto.

  6. Voyager

    Voyager 1 and its twin Voyager 2 are the only spacecraft ever to operate outside the heliosphere, the protective bubble of particles and magnetic fields generated by the Sun. Voyager 1 reached the interstellar boundary in 2012, while Voyager 2 (traveling slower and in a different direction than its twin) reached it in 2018.

  7. NASA's Voyager 1 Resumes Sending Engineering Updates to Earth

    The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars). Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the spacecraft was still receiving their commands and otherwise operating normally.

  8. Voyager 1 and 2: The Interstellar Mission

    The Voyager 1 and 2 spacecraft launched from Earth in 1977. Their mission was to explore Jupiter and Saturn —and beyond to the outer planets of our solar system. This was a big task. No human-made object had ever attempted a journey like that before. The two spacecraft took tens of thousands of pictures of Jupiter and Saturn and their moons.

  9. Voyager 1

    About the mission. Voyager 1 reached interstellar space in August 2012 and is the most distant human-made object in existence. Launched just shortly after its twin spacecraft, Voyager 2, in 1977, Voyager 1 explored the Jovian and Saturnian systems discovering new moons, active volcanoes and a wealth of data about the outer solar system.

  10. Voyager 1: 'The Spacecraft That Could' Hits New Milestone

    Voyager 1, already the most distant human-made object in the cosmos, reaches 100 astronomical units from the sun on Tuesday, August 15 at 5:13 p.m. Eastern time (2:13 p.m. Pacific time). That means the spacecraft, which launched nearly three decades ago, will be 100 times more distant from the sun than Earth is.

  11. Voyager 1 & 2

    NASA. Jun 20, 2014. Image Article. The primary mission of Voyager 1 and 2 was the exploration of Jupiter and Saturn; after completing this objective, Voyager 1 and 2's missions were extended. The Voyager Interstellar Mission will explore the edge of the solar system and beyond.Launch: Summer 1977Operating Network: Deep Space Network.

  12. Voyager 1 and 2, Humanity's Interstellar Envoys, Soldier On at 45

    Voyager 1 is currently 14.6 billion miles from home, and Voyager 2 is 12.1 billion miles away, but for perspective, the nearest star is some 25 trillion miles away. (NASA maintains a tracker of ...

  13. The most distant spacecraft in the solar system

    We now have five spacecraft that have either reached the edges of our solar system or are fast approaching it: Pioneer 10, Pioneer 11, Voyager 1, Voyager 2 and New Horizons. Most of these probes ...

  14. Voyager 1 and 2

    This graphic provides some of the mission's key statistics from 2018, when NASA's Voyager 2 probe exited the heliosphere. This is Test--testTEST TEST UPDATED CAPTIONS This illustrated graphic was made to mark Voyager 1's entry into interstellar space in 2012.

  15. Voyager

    Voyager 1 flew within 64,200 kilometers (40,000 miles) of the cloud tops, while Voyager 2 came within 41,000 kilometers (26,000 miles). Saturn is the second largest planet in the solar system. It takes 29.5 Earth years to complete one orbit of the Sun, and its day was clocked at 10 hours, 39 minutes.

  16. Inside NASA's monthslong effort to rescue the Voyager 1 mission

    Voyager 1 and its twin, the Voyager 2 probe, each launched in 1977 on missions to study the outer solar system. As it sped through the cosmos, Voyager 1 flew by Jupiter and Saturn, studying the ...

  17. Where ARE NASA's Voyager 1 and 2 probes in deep space?

    The Voyager spacecraft were built by NASA's Jet Propulsion Laboratory in Pasadena, California, which continues to operate both. NASA launched the Voyager 1 spacecraft on September 5 1977, and the ...

  18. Voyager 1 and 2 flight paths demonstrated

    This animation shows the paths of the Voyager 1 and 2 spacecraft, which were designed to explore the outer planets of the solar system. The twin probes, each carrying 10 instruments, provided a wealth of new information about interplanetary space and the four giant gas planets and their moons. The Voyagers were launched in late 1977. In 1979 they reached Jupiter. Passing through the planet's ...

  19. Voyager-Sonden: Interstellarer Raum noch seltsamer als gedacht

    Voyager 2 beobachtete vor ihrer Durchquerung der Heliopause einen völlig anderen Bereich, der aber ungefähr genauso mächtig war wie der vergleichsweise statische Bereich, den Voyager 1 durchquert hatte. „Das ist ziemlich, ziemlich seltsam", sagte Koehn. „Das zeigt uns wirklich, dass wir mehr Daten brauchen.".

  20. Voyager 1 & 2

    Voyager Goals & Accomplishments. Voyager 1 and 2 were designed to take advantage of a rare planetary alignment to explore the outer solar system. Voyager 1 targeted Jupiter and Saturn before continuing on to chart the far edges of our solar system. Voyager 2 targeted Jupiter, Saturn, Uranus and Neptune before joining its sister probe on their ...

  21. Voyager 1 was in crisis in interstellar space. NASA wouldn't give up

    Voyager 1 and its twin, Voyager 2, launched in 1977 and in the years that followed obtained stunning close-up images of Jupiter and Saturn. Voyager 2 also flew by Uranus and Neptune and is the ...

  22. Voyager

    The current approximate weight of Voyager 1 is 733 kg and Voyager 2 is 735 kg. The difference is in the amount of hydrazine remaining. ... The stylus is in the correct position to play the record from the beginning. Written around it in binary arithmetic is the correct time of one rotation of the record, 3.6 seconds, expressed in time units of ...

  23. How NASA is Hacking Voyager 1 Back to Life

    Voyager 1 and its twin, Voyager 2—which also remains operational—were launched nearly 50 years ago, in 1977, to tour the solar system.

  24. Voyager 1 and 2 Detected Something Beyond the Edge of Our ...

    The journey of Voyager I and II beyond the orbit of Neptune. Enter at https://www.omaze.com/astrum for your chance to win an Unplugged Tesla S-APEX Plaid, an...