• Data Science
  • Courses On Offers

Back to Explore Page

Reset password New user? Sign up

Existing user? Log in

Traveling Salesperson Problem

Already have an account? Log in here.

A salesperson needs to visit a set of cities to sell their goods. They know how many cities they need to go to and the distances between each city. In what order should the salesperson visit each city exactly once so that they minimize their travel time and so that they end their journey in their city of origin?

The traveling salesperson problem is an extremely old problem in computer science that is an extension of the Hamiltonian Circuit Problem . It has important implications in complexity theory and the P versus NP problem because it is an NP-Complete problem . This means that a solution to this problem cannot be found in polynomial time (it takes superpolynomial time to compute an answer). In other words, as the number of vertices increases linearly, the computation time to solve the problem increases exponentially.

The following image is a simple example of a network of cities connected by edges of a specific distance. The origin city is also marked.

Network of cities

Here is the solution for that network, it has a distance traveled of only 14. Any other path that the salesman can takes will result in a path length that is more than 14.

Relationship to Graphs

Special kinds of tsp, importance for p vs np, applications.

The traveling salesperson problem can be modeled as a graph . Specifically, it is typical a directed, weighted graph. Each city acts as a vertex and each path between cities is an edge. Instead of distances, each edge has a weight associated with it. In this model, the goal of the traveling salesperson problem can be defined as finding a path that visits every vertex, returns to the original vertex, and minimizes total weight.

To that end, many graph algorithms can be used on this model. Search algorithms like breadth-first search (BFS) , depth-first search (DFS) , and Dijkstra's shortest path algorithm can certainly be used, however, they do not take into consideration that fact that every vertex must be visited.

The Traveling Salesperson Problem (TSP), an NP-Complete problem, is notoriously complicated to solve. That is because the greedy approach is so computational intensive. The greedy approach to solving this problem would be to try every single possible path and see which one is the fastest. Try this conceptual question to see if you have a grasp for how hard it is to solve.

For a fully connected map with \(n\) cities, how many total paths are possible for the traveling salesperson? Show Answer There are (n-1)! total paths the salesperson can take. The computation needed to solve this problem in this way grows far too quickly to be a reasonable solution. If this map has only 5 cities, there are \(4!\), or 24, paths. However, if the size of this map is increased to 20 cities, there will be \(1.22 \cdot 10^{17}\) paths!

The greedy approach to TSP would go like this:

  • Find all possible paths.
  • Find the cost of every paths.
  • Choose the path with the lowest cost.

Another version of a greedy approach might be: At every step in the algorithm, choose the best possible path. This version might go a little quicker, but it's not guaranteed to find the best answer, or an answer at all since it might hit a dead end.

For NP-Hard problems (a subset of NP-Complete problems) like TSP, exact solutions can only be implemented in a reasonable amount of time for small input sizes (maps with few cities). Otherwise, the best approach we can do is provide a heuristic to help the problem move forward in an optimal way. However, these approaches cannot be proven to be optimal because they always have some sort of downside.

Small input sizes

As described, in a previous section , the greedy approach to this problem has a complexity of \(O(n!)\). However, there are some approaches that decrease this computation time.

The Held-Karp Algorithm is one of the earliest applications of dynamic programming . Its complexity is much lower than the greedy approach at \(O(n^2 2^n)\). Basically what this algorithm says is that every sub path along an optimal path is itself an optimal path. So, computing an optimal path is the same as computing many smaller subpaths and adding them together.

Heuristics are a way of ranking possible next steps in an algorithm in the hopes of cutting down computation time for the entire algorithm. They are often a tradeoff of some attribute - such as completeness, accuracy, or precision - in favor of speed. Heuristics exist for the traveling salesperson problem as well.

The most simple heuristic for this problem is the greedy heuristic. This heuristic simply says, at each step of the network traversal, choose the best next step. In other words, always choose the closest city that you have not yet visited. This heuristic seems like a good one because it is simple and intuitive, and it is even used in practice sometimes, however there are heuristics that are proven to be more effective.

Christofides algorithm is another heuristic. It produces at most 1.5 times the optimal weight for TSP. This algorithm involves finding a minimum spanning tree for the network. Next, it creates matchings for the cities of an odd degree (meaning they have an odd number of edges coming out of them), calculates an eulerian path , and converts back to a TSP path.

Even though it is typically impossible to optimally solve TSP problems, there are cases of TSP problems that can be solved if certain conditions hold.

The metric-TSP is an instance of TSP that satisfies this condition: The distance from city A to city B is less than or equal to the distance from city A to city C plus the distance from city C to city B. Or,

\[distance_{AB} \leq distance_{AC} + distance_{CB}\]

This is a condition that holds in the real world, but it can't always be expected to hold for every TSP problem. But, with this inequality in place, the approximated path will be no more than twice the optimal path. Even better, we can bound the solution to a \(3/2\) approximation by using Christofide's Algorithm .

The euclidean-TSP has an even stricter constraint on the TSP input. It states that all cities' edges in the network must obey euclidean distances . Recent advances have shown that approximation algorithms using euclidean minimum spanning trees have reduced the runtime of euclidean-TSP, even though they are also NP-hard. In practice, though, simpler heuristics are still used.

The P versus NP problem is one of the leading questions in modern computer science. It asks whether or not every problem whose solution can be verified in polynomial time by a computer can also be solved in polynomial time by a computer. TSP, for example, cannot be solved in polynomial time (at least that's what is currently theorized). However, TSP can be solved in polynomial time when it is phrased like this: Given a graph and an integer, x, decide if there is a path of length x or less than x . It's easy to see that given a proposed answer to this question, it is simple to check if it is less than or equal to x.

The traveling salesperson problem, like other problems that are NP-Complete, are very important to this debate. That is because if a polynomial time solution can be found to this problems, then \(P = NP\). As it stands, most scientists believe that \(P \ne NP\).

The traveling salesperson problem has many applications. The obvious ones are in the transportation space. Planning delivery routes or flight patterns, for example, would benefit immensly from breakthroughs is this problem or in the P versus NP problem .

However, this same logic can be applied to many facets of planning as well. In robotics, for instance, planning the order in which to drill holes in a circuit board is a complex task due to the sheer number of holes that must be drawn.

The best and most important application of TSP, however, comes from the fact that it is an NP-Complete problem. That means that its practical applications amount to the applications of any problem that is NP-Complete. So, if there are significant breakthroughs for TSP, that means that those exact same breakthrough can be applied to any problem in the NP-Complete class.

Problem Loading...

Note Loading...

Set Loading...

Travelling Salesman

0" class="metrics-moderators"> Approved by darkhorse64 Astrobytes leojean890

1,366 CodinGamers have started the puzzle

A higher resolution is required to access the IDE

  • = api.feedbackMetrics.averageRounded}" class="content-details-top-star-item">
  • = api.feedbackMetrics.averageRounded}" class="content-details-top-star-item rate-off">

Learning Opportunities

This puzzle can be solved using the following concepts. Practice using these concepts and improve your skills.

  • Greedy algorithms
  • Simulated Annealing
  • Heuristic search

  The Travelling Salesman Problem

  rules,   note,   game input.

Line 1: an integer N , the number of input points

N lines: two integers X and Y , the coordinates of a given point

  Example

The #1 tech hiring platform

Guru99

Travelling Salesman Problem: Python, C++ Algorithm

Alyssa Walker

What is the Travelling Salesman Problem (TSP)?

Travelling Salesman Problem (TSP) is a classic combinatorics problem of theoretical computer science. The problem asks to find the shortest path in a graph with the condition of visiting all the nodes only one time and returning to the origin city.

The problem statement gives a list of cities along with the distances between each city.

Objective: To start from the origin city, visit other cities only once, and return to the original city again. Our target is to find the shortest possible path to complete the round-trip route.

Example of TSP

Here a graph is given where 1, 2, 3, and 4 represent the cities, and the weight associated with every edge represents the distance between those cities.

Example of TSP

The goal is to find the shortest possible path for the tour that starts from the origin city, traverses the graph while only visiting the other cities or nodes once, and returns to the origin city.

For the above graph, the optimal route is to follow the minimum cost path: 1-2-4-3-1. And this shortest route would cost 10+25+30+15 =80

Different Solutions to Travelling Salesman Problem

Different Solutions to Travelling Salesman Problem

Travelling Salesman Problem (TSP) is classified as a NP-hard problem due to having no polynomial time algorithm. The complexity increases exponentially by increasing the number of cities.

There are multiple ways to solve the traveling salesman problem (tsp). Some popular solutions are:

The brute force approach is the naive method for solving traveling salesman problems. In this approach, we first calculate all possible paths and then compare them. The number of paths in a graph consisting of n cities is n! It is computationally very expensive to solve the traveling salesman problem in this brute force approach.

The branch-and-bound method: The problem is broken down into sub-problems in this approach. The solution of those individual sub-problems would provide an optimal solution.

This tutorial will demonstrate a dynamic programming approach, the recursive version of this branch-and-bound method, to solve the traveling salesman problem.

Dynamic programming is such a method for seeking optimal solutions by analyzing all possible routes. It is one of the exact solution methods that solve traveling salesman problems through relatively higher cost than the greedy methods that provide a near-optimal solution.

The computational complexity of this approach is O(N^2 * 2^N) which is discussed later in this article.

The nearest neighbor method is a heuristic-based greedy approach where we choose the nearest neighbor node. This approach is computationally less expensive than the dynamic approach. But it does not provide the guarantee of an optimal solution. This method is used for near-optimal solutions.

Algorithm for Traveling Salesman Problem

We will use the dynamic programming approach to solve the Travelling Salesman Problem (TSP).

Before starting the algorithm, let’s get acquainted with some terminologies:

  • A graph G=(V, E), which is a set of vertices and edges.
  • V is the set of vertices.
  • E is the set of edges.
  • Vertices are connected through edges.
  • Dist(i,j) denotes the non-negative distance between two vertices, i and j.

Let’s assume S is the subset of cities and belongs to {1, 2, 3, …, n} where 1, 2, 3…n are the cities and i, j are two cities in that subset. Now cost(i, S, j) is defined in such a way as the length of the shortest path visiting node in S, which is exactly once having the starting and ending point as i and j respectively.

For example, cost (1, {2, 3, 4}, 1) denotes the length of the shortest path where:

  • Starting city is 1
  • Cities 2, 3, and 4 are visited only once
  • The ending point is 1

The dynamic programming algorithm would be:

  • Set cost(i, , i) = 0, which means we start and end at i, and the cost is 0.
  • When |S| > 1, we define cost(i, S, 1) = ∝ where i !=1 . Because initially, we do not know the exact cost to reach city i to city 1 through other cities.
  • Now, we need to start at 1 and complete the tour. We need to select the next city in such a way-

cost(i, S, j)=min cost (i, S−{i}, j)+dist(i,j) where i∈S and i≠j

For the given figure, the adjacency matrix would be the following:

Algorithm for Traveling Salesman Problem

Let’s see how our algorithm works:

Step 1) We are considering our journey starting at city 1, visit other cities once and return to city 1.

Step 2) S is the subset of cities. According to our algorithm, for all |S| > 1, we will set the distance cost(i, S, 1) = ∝. Here cost(i, S, j) means we are starting at city i, visiting the cities of S once, and now we are at city j. We set this path cost as infinity because we do not know the distance yet. So the values will be the following:

Cost (2, {3, 4}, 1) = ∝ ; the notation denotes we are starting at city 2, going through cities 3, 4, and reaching 1. And the path cost is infinity. Similarly-

cost(3, {2, 4}, 1) = ∝

cost(4, {2, 3}, 1) = ∝

Step 3) Now, for all subsets of S, we need to find the following:

cost(i, S, j)=min cost (i, S−{i}, j)+dist(i,j), where j∈S and i≠j

That means the minimum cost path for starting at i, going through the subset of cities once, and returning to city j. Considering that the journey starts at city 1, the optimal path cost would be= cost(1, {other cities}, 1).

Let’s find out how we could achieve that:

Now S = {1, 2, 3, 4}. There are four elements. Hence the number of subsets will be 2^4 or 16. Those subsets are-

1) |S| = Null:

2) |S| = 1:

{{1}, {2}, {3}, {4}}

3) |S| = 2:

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

4) |S| = 3:

{{1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {1, 3, 4}}

5) |S| = 4:

{{1, 2, 3, 4}}

As we are starting at 1, we could discard the subsets containing city 1.

The algorithm calculation:

1) |S| = Φ:

cost (2, Φ, 1) = dist(2, 1) = 10

cost (3, Φ, 1) = dist(3, 1) = 15

cost (4, Φ, 1) = dist(4, 1) = 20

cost (2, {3}, 1) = dist(2, 3) + cost (3, Φ, 1) = 35+15 = 50

cost (2, {4}, 1) = dist(2, 4) + cost (4, Φ, 1) = 25+20 = 45

cost (3, {2}, 1) = dist(3, 2) + cost (2, Φ, 1) = 35+10 = 45

cost (3, {4}, 1) = dist(3, 4) + cost (4, Φ, 1) = 30+20 = 50

cost (4, {2}, 1) = dist(4, 2) + cost (2, Φ, 1) = 25+10 = 35

cost (4, {3}, 1) = dist(4, 3) + cost (3, Φ, 1) = 30+15 = 45

cost (2, {3, 4}, 1) = min [ dist[2,3]+Cost(3,{4},1) = 35+50 = 85,

dist[2,4]+Cost(4,{3},1) = 25+45 = 70 ] = 70

cost (3, {2, 4}, 1) = min [ dist[3,2]+Cost(2,{4},1) = 35+45 = 80,

dist[3,4]+Cost(4,{2},1) = 30+35 = 65 ] = 65

cost (4, {2, 3}, 1) = min [ dist[4,2]+Cost(2,{3},1) = 25+50 = 75

dist[4,3]+Cost(3,{2},1) = 30+45 = 75 ] = 75

cost (1, {2, 3, 4}, 1) = min [ dist[1,2]+Cost(2,{3,4},1) = 10+70 = 80

dist[1,3]+Cost(3,{2,4},1) = 15+65 = 80

dist[1,4]+Cost(4,{2,3},1) = 20+75 = 95 ] = 80

So the optimal solution would be 1-2-4-3-1

Algorithm for Traveling Salesman Problem

Pseudo-code

Implementation in c/c++.

Here’s the implementation in C++ :

Implementation in Python

Academic solutions to tsp.

Computer scientists have spent years searching for an improved polynomial time algorithm for the Travelling Salesman Problem. Until now, the problem is still NP-hard.

Though some of the following solutions were published in recent years that have reduced the complexity to a certain degree:

  • The classical symmetric TSP is solved by the Zero Suffix Method.
  • The Biogeography‐based Optimization Algorithm is based on the migration strategy to solve the optimization problems that can be planned as TSP.
  • Multi-Objective Evolutionary Algorithm is designed for solving multiple TSP based on NSGA-II.
  • The Multi-Agent System solves the TSP of N cities with fixed resources.

Application of Traveling Salesman Problem

Travelling Salesman Problem (TSP) is applied in the real world in both its purest and modified forms. Some of those are:

  • Planning, logistics, and manufacturing microchips : Chip insertion problems naturally arise in the microchip industry. Those problems can be planned as traveling salesman problems.
  • DNA sequencing : Slight modification of the traveling salesman problem can be used in DNA sequencing. Here, the cities represent the DNA fragments, and the distance represents the similarity measure between two DNA fragments.
  • Astronomy : The Travelling Salesman Problem is applied by astronomers to minimize the time spent observing various sources.
  • Optimal control problem : Travelling Salesman Problem formulation can be applied in optimal control problems. There might be several other constraints added.

Complexity Analysis of TSP

So the total time complexity for an optimal solution would be the Number of nodes * Number of subproblems * time to solve each sub-problem. The time complexity can be defined as O(N 2 * 2^N).

  • Space Complexity: The dynamic programming approach uses memory to store C(S, i), where S is a subset of the vertices set. There is a total of 2 N subsets for each node. So, the space complexity is O(2^N).

Next, you’ll learn about Sieve of Eratosthenes Algorithm

  • Linear Search: Python, C++ Example
  • DAA Tutorial PDF: Design and Analysis of Algorithms
  • Heap Sort Algorithm (With Code in Python and C++)
  • Kadence’s Algorithm: Largest Sum Contiguous Subarray
  • Radix Sort Algorithm in Data Structure
  • Doubly Linked List: C++, Python (Code Example)
  • Singly Linked List in Data Structures
  • Adjacency List and Matrix Representation of Graph

Data Structures & Algorithms Tutorial

  • Data Structures & Algorithms
  • DSA - Overview
  • DSA - Environment Setup
  • DSA - Algorithms Basics
  • DSA - Asymptotic Analysis
  • Data Structures
  • DSA - Data Structure Basics
  • DSA - Data Structures and Types
  • DSA - Array Data Structure
  • Linked Lists
  • DSA - Linked List Data Structure
  • DSA - Doubly Linked List Data Structure
  • DSA - Circular Linked List Data Structure
  • Stack & Queue
  • DSA - Stack Data Structure
  • DSA - Expression Parsing
  • DSA - Queue Data Structure
  • Searching Algorithms
  • DSA - Searching Algorithms
  • DSA - Linear Search Algorithm
  • DSA - Binary Search Algorithm
  • DSA - Interpolation Search
  • DSA - Jump Search Algorithm
  • DSA - Exponential Search
  • DSA - Fibonacci Search
  • DSA - Sublist Search
  • DSA - Hash Table
  • Sorting Algorithms
  • DSA - Sorting Algorithms
  • DSA - Bubble Sort Algorithm
  • DSA - Insertion Sort Algorithm
  • DSA - Selection Sort Algorithm
  • DSA - Merge Sort Algorithm
  • DSA - Shell Sort Algorithm
  • DSA - Heap Sort
  • DSA - Bucket Sort Algorithm
  • DSA - Counting Sort Algorithm
  • DSA - Radix Sort Algorithm
  • DSA - Quick Sort Algorithm
  • Graph Data Structure
  • DSA - Graph Data Structure
  • DSA - Depth First Traversal
  • DSA - Breadth First Traversal
  • DSA - Spanning Tree
  • Tree Data Structure
  • DSA - Tree Data Structure
  • DSA - Tree Traversal
  • DSA - Binary Search Tree
  • DSA - AVL Tree
  • DSA - Red Black Trees
  • DSA - B Trees
  • DSA - B+ Trees
  • DSA - Splay Trees
  • DSA - Tries
  • DSA - Heap Data Structure
  • DSA - Recursion Algorithms
  • DSA - Tower of Hanoi Using Recursion
  • DSA - Fibonacci Series Using Recursion
  • Divide and Conquer
  • DSA - Divide and Conquer
  • DSA - Max-Min Problem
  • DSA - Strassen's Matrix Multiplication
  • DSA - Karatsuba Algorithm
  • Greedy Algorithms
  • DSA - Greedy Algorithms
  • DSA - Travelling Salesman Problem (Greedy Approach)
  • DSA - Prim's Minimal Spanning Tree
  • DSA - Kruskal's Minimal Spanning Tree
  • DSA - Dijkstra's Shortest Path Algorithm
  • DSA - Map Colouring Algorithm
  • DSA - Fractional Knapsack Problem
  • DSA - Job Sequencing with Deadline
  • DSA - Optimal Merge Pattern Algorithm
  • Dynamic Programming
  • DSA - Dynamic Programming
  • DSA - Matrix Chain Multiplication
  • DSA - Floyd Warshall Algorithm
  • DSA - 0-1 Knapsack Problem
  • DSA - Longest Common Subsequence Algorithm
  • DSA - Travelling Salesman Problem (Dynamic Approach)
  • Approximation Algorithms
  • DSA - Approximation Algorithms
  • DSA - Vertex Cover Algorithm
  • DSA - Set Cover Problem
  • DSA - Travelling Salesman Problem (Approximation Approach)
  • Randomized Algorithms
  • DSA - Randomized Algorithms
  • DSA - Randomized Quick Sort Algorithm
  • DSA - Karger’s Minimum Cut Algorithm
  • DSA - Fisher-Yates Shuffle Algorithm
  • DSA Useful Resources
  • DSA - Questions and Answers
  • DSA - Quick Guide
  • DSA - Useful Resources
  • DSA - Discussion
  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Travelling Salesman Problem (Greedy Approach)

Travelling salesperson algorithm.

The travelling salesman problem is a graph computational problem where the salesman needs to visit all cities (represented using nodes in a graph) in a list just once and the distances (represented using edges in the graph) between all these cities are known. The solution that is needed to be found for this problem is the shortest possible route in which the salesman visits all the cities and returns to the origin city.

If you look at the graph below, considering that the salesman starts from the vertex ‘a’, they need to travel through all the remaining vertices b, c, d, e, f and get back to ‘a’ while making sure that the cost taken is minimum.

salesman_graph

There are various approaches to find the solution to the travelling salesman problem: naive approach, greedy approach, dynamic programming approach, etc. In this tutorial we will be learning about solving travelling salesman problem using greedy approach.

As the definition for greedy approach states, we need to find the best optimal solution locally to figure out the global optimal solution. The inputs taken by the algorithm are the graph G {V, E}, where V is the set of vertices and E is the set of edges. The shortest path of graph G starting from one vertex returning to the same vertex is obtained as the output.

Travelling salesman problem takes a graph G {V, E} as an input and declare another graph as the output (say G’) which will record the path the salesman is going to take from one node to another.

The algorithm begins by sorting all the edges in the input graph G from the least distance to the largest distance.

The first edge selected is the edge with least distance, and one of the two vertices (say A and B) being the origin node (say A).

Then among the adjacent edges of the node other than the origin node (B), find the least cost edge and add it onto the output graph.

Continue the process with further nodes making sure there are no cycles in the output graph and the path reaches back to the origin node A.

However, if the origin is mentioned in the given problem, then the solution must always start from that node only. Let us look at some example problems to understand this better.

Consider the following graph with six cities and the distances between them −

graph_six_cities

From the given graph, since the origin is already mentioned, the solution must always start from that node. Among the edges leading from A, A → B has the shortest distance.

graph a to b

Then, B → C has the shortest and only edge between, therefore it is included in the output graph.

graph_b_to_c

There’s only one edge between C → D, therefore it is added to the output graph.

graph_c_to_d

There’s two outward edges from D. Even though, D → B has lower distance than D → E, B is already visited once and it would form a cycle if added to the output graph. Therefore, D → E is added into the output graph.

graph d to e

There’s only one edge from e, that is E → F. Therefore, it is added into the output graph.

graph e to f

Again, even though F → C has lower distance than F → A, F → A is added into the output graph in order to avoid the cycle that would form and C is already visited once.

graph f to a

The shortest path that originates and ends at A is A → B → C → D → E → F → A

The cost of the path is: 16 + 21 + 12 + 15 + 16 + 34 = 114.

Even though, the cost of path could be decreased if it originates from other nodes but the question is not raised with respect to that.

The complete implementation of Travelling Salesman Problem using Greedy Approach is given below −

Ensure that you are logged in and have the required permissions to access the test.

A server error has occurred. Please refresh the page or try after some time.

An error has occurred. Please refresh the page or try after some time.

Google

  • An alphabet
  • A special character
  • Minimum 8 characters

A password reset link will be sent to the following email id

404 Not found

  • Data Structures
  • Linked List
  • Binary Tree
  • Binary Search Tree
  • Segment Tree
  • Disjoint Set Union
  • Fenwick Tree
  • Red-Black Tree
  • Advanced Data Structures

Traveling Salesman Problem using Genetic Algorithm

  • Travelling Salesman Problem using Hungarian method
  • Traveling Salesman Problem using Branch And Bound
  • Bitonic Travelling Salesman Problem
  • Traveling Salesman Problem (TSP) Implementation
  • Travelling Salesman Problem implementation using BackTracking
  • Travelling Salesman Problem | Greedy Approach
  • Travelling Salesman Problem using Dynamic Programming
  • Travelling Salesman Problem (TSP) using Reduced Matrix Method
  • Approximate solution for Travelling Salesman Problem using MST
  • Proof that traveling salesman problem is NP Hard
  • Bitmasking and Dynamic Programming | Travelling Salesman Problem
  • Hungarian Algorithm for Assignment Problem | Set 1 (Introduction)
  • Genetic Algorithms
  • How to implement Genetic Algorithm using PyTorch
  • Steady State Genetic Algorithm (SSGA)
  • Java Program to Solve Travelling Salesman Problem Using Incremental Insertion Method
  • Simple Genetic Algorithm (SGA)
  • Python | Single Point Crossover in Genetic Algorithm
  • Encoding Methods in Genetic Algorithm
  • Must Do Coding Questions for Companies like Amazon, Microsoft, Adobe, ...
  • Top 50 Array Coding Problems for Interviews
  • Introduction to Recursion - Data Structure and Algorithm Tutorials
  • Difference between BFS and DFS
  • Must Do Coding Questions for Product Based Companies
  • A* Search Algorithm
  • Top 10 Algorithms in Interview Questions
  • Sliding Window Technique
  • How to write a Pseudo Code?
  • Asymptotic Notation and Analysis (Based on input size) in Complexity Analysis of Algorithms

AuPrerequisites: Genetic Algorithm , Travelling Salesman Problem In this article, a genetic algorithm is proposed to solve the travelling salesman problem .  Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life. The algorithm is designed to replicate the natural selection process to carry generation, i.e. survival of the fittest of beings. Standard genetic algorithms are divided into five phases which are:   

  • Creating initial population.
  • Calculating fitness.
  • Selecting the best genes.
  • Crossing over.
  • Mutating to introduce variations.

These algorithms can be implemented to find a solution to the optimization problems of various types. One such problem is the Traveling Salesman Problem . The problem says that a salesman is given a set of cities, he has to find the shortest route to as to visit each city exactly once and return to the starting city.  Approach: In the following implementation, cities are taken as genes, string generated using these characters is called a chromosome, while a fitness score which is equal to the path length of all the cities mentioned, is used to target a population. Fitness Score is defined as the length of the path described by the gene. Lesser the path length fitter is the gene. The fittest of all the genes in the gene pool survive the population test and move to the next iteration. The number of iterations depends upon the value of a cooling variable. The value of the cooling variable keeps on decreasing with each iteration and reaches a threshold after a certain number of iterations. Algorithm:    

Pseudo-code    

How the mutation works? Suppose there are 5 cities: 0, 1, 2, 3, 4. The salesman is in city 0 and he has to find the shortest route to travel through all the cities back to the city 0. A chromosome representing the path chosen can be represented as:   

travelling salesman gfg practice

This chromosome undergoes mutation. During mutation, the position of two cities in the chromosome is swapped to form a new configuration, except the first and the last cell, as they represent the start and endpoint.   

travelling salesman gfg practice

Original chromosome had a path length equal to INT_MAX , according to the input defined below, since the path between city 1 and city 4 didn’t exist. After mutation, the new child formed has a path length equal to 21 , which is a much-optimized answer than the original assumption. This is how the genetic algorithm optimizes solutions to hard problems.  

Below is the implementation of the above approach:  

Time complexity:  O(n^2) as it uses nested loops to calculate the fitness value of each gnome in the population.  Auxiliary Space : O(n)

Please Login to comment...

Similar reads.

author

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

VIDEO

  1. Tiptur to Channagiri Travelling Guide #tiptur #channagiri #kadur #birur #ajjampura #arsikere

  2. SelvaGanesh Vinayakram @ Dumru 2015

  3. 10 Tips for Keeping Clean & Organized While Travelling! (Clean My Space)

  4. (紅VAN式駕駛)🇭🇰 九巴 KMB K-216M ASV74 KZ8212 @ 94 黃石碼頭 至 西貢 Wong Shek Pier to Sai Kung

  5. முற்றிலும் அழிய‌ இருக்கும் காளி கோவில்/கோவில் முழுக்க வெளவால் / கள்ளக்குறிச்சி ஆதனூர்

  6. Complete Portfolio Website Using HTML CSS and JavaScript

COMMENTS

  1. Travelling Salesman Problem

    Java. Python. HTML. Interview Preparation. Menu. Back to Explore Page. Given a matrix cost of size n where cost[i][j] denotes the cost of moving from city i to city j. Your task is to complete a tour from the city 0 (0 based index) to all other cities such that you visit each city exactly once and then at the end come b.

  2. Traveling Salesman Problem (TSP) Implementation

    Travelling Salesman Problem (TSP) : Given a set of cities and distances between every pair of cities, the problem is to find the shortest possible route that visits every city exactly once and returns to the starting point. Note the difference between Hamiltonian Cycle and TSP. The Hamiltonian cycle problem is to find if there exists a tour that visits every city exactly once.

  3. Travelling Salesman Problem using Dynamic Programming

    The following are different solutions for the traveling salesman problem. Naive Solution: 1) Consider city 1 as the starting and ending point. 2) Generate all (n-1)! Permutations of cities. 3) Calculate the cost of every permutation and keep track of the minimum cost permutation.

  4. GeeksforGeeks

    We would like to show you a description here but the site won't allow us.

  5. Travelling Salesman Problem

    Find Complete Code at GeeksforGeeks Article: http://www.geeksforgeeks.org/travelling-salesman-problem-set-1/Soundtrack: Enochian Magic by JR TundraThis video...

  6. Traveling Salesman Problem

    Overview. The Travelling Salesman Problem (TSP) is a very well known problem in theoretical computer science and operations research. The standard version of TSP is a hard problem to solve and belongs to the NP-Hard class. In this tutorial, we'll discuss a dynamic approach for solving TSP. Furthermore, we'll also present the time complexity ...

  7. Traveling Salesperson Problem

    The traveling salesperson problem can be modeled as a graph. Specifically, it is typical a directed, weighted graph. Each city acts as a vertex and each path between cities is an edge. Instead of distances, each edge has a weight associated with it. In this model, the goal of the traveling salesperson problem can be defined as finding a path ...

  8. Travelling salesman problem

    The travelling salesman problem, also known as the travelling salesperson problem (TSP), ... In practice, it is often possible to achieve substantial improvement over 2-opt without the combinatorial cost of the general 3-opt by restricting the 3-changes to this special subset where two of the removed edges are adjacent. This so-called two-and-a ...

  9. Optimize your algorithm with "Travelling Salesman"

    The Travelling Salesman Problem. A certain number of points is given. The goal is to visit all other points exactly once from the starting point and then return to the starting point again. The starting point is always the first given point. Sounds not very hard at first, but it is an NP-hard problem, so bruteforce is impossible.

  10. Travelling Salesman Problem implementation using BackTracking

    Travelling Salesman Problem (TSP): Given a set of cities and distance between every pair of cities, the problem is to find the shortest possible route that visits every city exactly once and returns back to the starting point. Note the difference between Hamiltonian Cycle and TSP. The Hamiltonian cycle problem is to find if there exist a tour that visits every city exactly once.

  11. Travelling Salesman Problem: Python, C++ Algorithm

    Travelling Salesman Problem (TSP) is a classic combinatorics problem of theoretical computer science. The problem asks to find the shortest path in a graph with the condition of visiting all the nodes only one time and returning to the origin city. The problem statement gives a list of cities along with the distances between each city.

  12. L-5.4: Traveling Salesman Problem

    👉Subscribe to our new channel:https://www.youtube.com/@varunainashots Design and Analysis of algorithms (DAA) (Complete Playlist):https://www.youtube.com/p...

  13. Travelling Salesman Problem (Greedy Approach)

    Travelling salesman problem takes a graph G {V, E} as an input and declare another graph as the output (say G') which will record the path the salesman is going to take from one node to another. The algorithm begins by sorting all the edges in the input graph G from the least distance to the largest distance. The first edge selected is the ...

  14. Travelling Salesman Problem Questions and Answers

    If salesman starting city is A, then a TSP tour in the graph is-. A → B → D → C → A. Cost of the tour. = 10 + 25 + 30 + 15. = 80 units. In this article, we will discuss how to solve travelling salesman problem using branch and bound approach with example.

  15. 7.3 Traveling Salesman Problem

    Traveling Salesman Problem - Branch and BoundPATREON : https://www.patreon.com/bePatron?u=20475192Courses on Udemy=====Java Programminghttps://www...

  16. Bitmasking and Dynamic Programming

    In this post, we will be using our knowledge of dynamic programming and Bitmasking technique to solve one of the famous NP-hard problem "Traveling Salesman Problem". Before solving the problem, we assume that the reader has the knowledge of. DP and formation of DP transition relation. Bitmasking in DP. Traveling Salesman problem.

  17. Traveling Salesman Problem: Exact Solutions vs. Heuristic vs ...

    The Traveling Salesman Problem (TSP) is a well-known challenge in computer science, mathematical optimization, and operations research that aims to locate the most efficient route for visiting a group of cities and returning to the initial city.TSP is an extensively researched topic in the realm of combinatorial optimization.It has practical uses in various other optimization problems ...

  18. Approximate solution for Travelling Salesman Problem using MST

    The idea is to use M inimum S panning T ree (MST). Following is the MST based algorithm. Algorithm: Let 1 be the starting and ending point for salesman. Construct MST from with 1 as root using Prim's Algorithm. List vertices visited in preorder walk of the constructed MST and add 1 at the end.

  19. A Travelling Salesman Problem

    The Travelling Salesman spends a lot of time travelling so he tends to get bored. To pass time, he likes to perform operations on numbers. One such operation is to take a positive integer x and reduce it to the number of bits set to 1 in the binary representation of x. For example for number 13 it's true that 13 in decimal = 1101 in binary, so ...

  20. Travelling Salesman Problem implementation using BackTracking

    Travelling Salesman Related (TSP): Given a set of cities and distance between every pairs of cities, the problem lives to find the shortest possible route that views every town exactly once and returns back to the starting point. Note the difference within Hamiltonian Cycle and TSP. The Hamiltonian cycle problem shall to find if there exist a tour that visits every urban exactly once.

  21. PDF The Traveling Salesman problem

    The Traveling Salesman Problem (TSP) is a problem whose solution has eluded many mathematicians for years. Currently there is no solution to the TSP that has satisfied mathematicians. Historically, mathematics related to the TSP was developed in the 1800's by Sir William Rowan Hamilton and Thomas Penyngton Kirkman, Irish and British mathemati-

  22. Travelling Salesman Problem

    Approach: This problem can be solved using Greedy Technique. Below are the steps: Create two primary data holders: A list that holds the indices of the cities in terms of the input matrix of distances between cities. Result array which will have all cities that can be displayed out to the console in any manner.

  23. Traveling Salesman Problem using Genetic Algorithm

    AuPrerequisites: Genetic Algorithm, Travelling Salesman Problem In this article, a genetic algorithm is proposed to solve the travelling salesman problem. Genetic algorithms are heuristic search algorithms inspired by the process that supports the evolution of life. The algorithm is designed to replicate the natural selection process to carry generation, i.e. survival of the fittest of beings.