How Does Light Travel Through Space? Facts & FAQ

Last Updated on Mar 15 2024

light as seen in space

Light is such a fundamental part of our lives. From the moment we’re born, we are showered with all kinds of electromagnetic radiation, both colorful, and invisible. Light travels through the vacuum of space at 186,828 miles per second as transverse waves , outside of any material or medium, because photons—the particles that make up light—also behave as waves. This is referred to as the wave-particle duality of light.  

  • What Is Light?

The wave-particle duality of light simply means that light behaves as both waves and particles . Although this has been long accepted as fact, scientists only managed to observe both these properties of light ¹ simultaneously for the first time in 2015.

As a wave, light is electromagnetic radiation—vibrations, or oscillations, of the electric and magnetic fields. As particles, light is made up of little massless packets of energy called photons ¹ .

  • What Are Light Waves?

Waves are the transference of energy from one point to another. If we dropped a pebble into a small pond, the energy that the impact creates would transfer as a ripple, or a wave, that travels through the surface of the water, from one water particle to another, until eventually reaching the edge of the pond.

This is also how sound waves work—except that, with sound, it’s the pressure or vibrations of particles in the air that eventually reach our ears.

Unlike water and sound, light itself is electromagnetic radiation—or light waves—so it doesn’t need a medium to travel through.

  • What Are Transverse Waves?

Light propagates through transverse waves. Transverse waves refer to a way in which energy is transferred.

Transverse waves oscillate at a 90-degree angle (or right angle) to the direction the energy is traveling in. An easy way to picture this is to imagine an S shape flipped onto its side. The waves would be going up and down, while the energy would be moving either left or right.

With light waves ¹ , there are 2 oscillations to consider. If the light wave is traveling on the X axis, then the oscillations of the electric field would be at a right angle, either along the Y or Z axes, and the oscillations of the magnetic field would be on the other.

  • Can Anything Travel Faster Than Light?

The simple answer to this question is no, as far as we know at this time, nothing can go faster than the speed of light ¹ . Albert Einstein’s special theory of relativity states that “no known object can travel faster than the speed of light in a vacuum.”

Space and time don’t yet exist beyond the speed of light—if we were to travel that fast, the closer we get to the speed of light, the more our spatial dimension would shrink, until eventually collapsing.

Beyond this, the laws of physics state that as an object approaches the speed of light , its mass would become infinite, and so would the energy it would need to propel it. Since it’s probably impossible to create an infinite amount of energy, it would be difficult for anything to travel faster than light.

Tachyon, a hypothetical particle, is said to travel faster than the speed of light. However, because its speed would not be consistent with the known laws of physics, physicists believe that tachyon particles do not exist.

  • Final Thoughts

Light travels through space as transverse, electromagnetic waves. Its wave-particle duality means that it behaves as both particles and waves. As far as we know, nothing in the world travels as fast as light.

  • https://phys.org/news/2015-03-particle.html
  • https://www.nature.com/articles/ncomms7407
  • https://www.wtamu.edu/~cbaird/sq/2017/07/20/is-the-reason-that-nothing-can-go-faster-than-light-because-we-have-not-tried-hard-enough/
  • https://www.physics.brocku.ca/PPLATO/h-flap/phys6_1f_1.png
  • https://science.nasa.gov/ems/02_anatomy

Featured Image Credit: NASA, Unsplash

Table of Contents

About the Author Cheryl Regan

Cheryl is a freelance content and copywriter from the United Kingdom. Her interests include hiking and amateur astronomy but focuses her writing on gardening and photography. If she isn't writing she can be found curled up with a coffee and her pet cat.

Related Articles:

15 Crucial Facts About Ultraviolet Rays & the Sun

What Constellation Is Spica In? The Interesting Answer!

10 Interesting Leo Constellation Facts, Myths, and FAQs

15 Interesting Pegasus Constellation Facts, Myths, and FAQs

6 Interesting Sagittarius Constellation Facts, Myths, and FAQs in 2024!

What Are Constellations? Where Did They Come From?

8 Interesting Libra Constellation Facts, Myths, and FAQs

What Is Infrared Radiation? Science-Based Facts & FAQ

NASA Logo

Anatomy of an Electromagnetic Wave

Energy, a measure of the ability to do work, comes in many forms and can transform from one type to another. Examples of stored or potential energy include batteries and water behind a dam. Objects in motion are examples of kinetic energy. Charged particles—such as electrons and protons—create electromagnetic fields when they move, and these fields transport the type of energy we call electromagnetic radiation, or light.

A photograph of a drop of water leaving ripples in a pool.

What are Electromagnetic and Mechanical waves?

Mechanical waves and electromagnetic waves are two important ways that energy is transported in the world around us. Waves in water and sound waves in air are two examples of mechanical waves. Mechanical waves are caused by a disturbance or vibration in matter, whether solid, gas, liquid, or plasma. Matter that waves are traveling through is called a medium. Water waves are formed by vibrations in a liquid and sound waves are formed by vibrations in a gas (air). These mechanical waves travel through a medium by causing the molecules to bump into each other, like falling dominoes transferring energy from one to the next. Sound waves cannot travel in the vacuum of space because there is no medium to transmit these mechanical waves.

An illustration in 3 panels — the first panel shows a wave approaching an insect sitting on the surface of the water. Second panel shows the wave passing underneath the insect, the insect stays in the same place but moves up as the wave passes. Third panel shows that the insect did not move with the wave, instead the wave had passed by the insect.

ELECTROMAGNETIC WAVES

Electricity can be static, like the energy that can make your hair stand on end. Magnetism can also be static, as it is in a refrigerator magnet. A changing magnetic field will induce a changing electric field and vice-versa—the two are linked. These changing fields form electromagnetic waves. Electromagnetic waves differ from mechanical waves in that they do not require a medium to propagate. This means that electromagnetic waves can travel not only through air and solid materials, but also through the vacuum of space.

In the 1860's and 1870's, a Scottish scientist named James Clerk Maxwell developed a scientific theory to explain electromagnetic waves. He noticed that electrical fields and magnetic fields can couple together to form electromagnetic waves. He summarized this relationship between electricity and magnetism into what are now referred to as "Maxwell's Equations."

A diagram of an electric field shown as a sine wave with red arrows beneath the curves and a magnetic field shown as a sine wave with blue arrows perpendicular to the electric field.

Heinrich Hertz, a German physicist, applied Maxwell's theories to the production and reception of radio waves. The unit of frequency of a radio wave -- one cycle per second -- is named the hertz, in honor of Heinrich Hertz.

His experiment with radio waves solved two problems. First, he had demonstrated in the concrete, what Maxwell had only theorized — that the velocity of radio waves was equal to the velocity of light! This proved that radio waves were a form of light! Second, Hertz found out how to make the electric and magnetic fields detach themselves from wires and go free as Maxwell's waves — electromagnetic waves.

WAVES OR PARTICLES? YES!

Light is made of discrete packets of energy called photons. Photons carry momentum, have no mass, and travel at the speed of light. All light has both particle-like and wave-like properties. How an instrument is designed to sense the light influences which of these properties are observed. An instrument that diffracts light into a spectrum for analysis is an example of observing the wave-like property of light. The particle-like nature of light is observed by detectors used in digital cameras—individual photons liberate electrons that are used for the detection and storage of the image data.

POLARIZATION

One of the physical properties of light is that it can be polarized. Polarization is a measurement of the electromagnetic field's alignment. In the figure above, the electric field (in red) is vertically polarized. Think of a throwing a Frisbee at a picket fence. In one orientation it will pass through, in another it will be rejected. This is similar to how sunglasses are able to eliminate glare by absorbing the polarized portion of the light.

DESCRIBING ELECTROMAGNETIC ENERGY

The terms light, electromagnetic waves, and radiation all refer to the same physical phenomenon: electromagnetic energy. This energy can be described by frequency, wavelength, or energy. All three are related mathematically such that if you know one, you can calculate the other two. Radio and microwaves are usually described in terms of frequency (Hertz), infrared and visible light in terms of wavelength (meters), and x-rays and gamma rays in terms of energy (electron volts). This is a scientific convention that allows the convenient use of units that have numbers that are neither too large nor too small.

The number of crests that pass a given point within one second is described as the frequency of the wave. One wave—or cycle—per second is called a Hertz (Hz), after Heinrich Hertz who established the existence of radio waves. A wave with two cycles that pass a point in one second has a frequency of 2 Hz.

Diagram showing frequency as the measurement of the number of wave crests that pass a given point in a second. Wavelength is measured as the distance between two crests.

Electromagnetic waves have crests and troughs similar to those of ocean waves. The distance between crests is the wavelength. The shortest wavelengths are just fractions of the size of an atom, while the longest wavelengths scientists currently study can be larger than the diameter of our planet!

An illustration showing a jump rope with each end being held by a person. As the people move the jump rope up and down very fast – adding MORE energy – the more wave crests appear, thus shorter wavelengths. When the people move the jump rope up and down slower, there are fewer wave crests within the same distance, thus longer wavelengths.

An electromagnetic wave can also be described in terms of its energy—in units of measure called electron volts (eV). An electron volt is the amount of kinetic energy needed to move an electron through one volt potential. Moving along the spectrum from long to short wavelengths, energy increases as the wavelength shortens. Consider a jump rope with its ends being pulled up and down. More energy is needed to make the rope have more waves.

Next: Wave Behaviors

National Aeronautics and Space Administration, Science Mission Directorate. (2010). Anatomy of an Electromagnetic Wave. Retrieved [insert date - e.g. August 10, 2016] , from NASA Science website: http://science.nasa.gov/ems/02_anatomy

Science Mission Directorate. "Anatomy of an Electromagnetic Wave" NASA Science . 2010. National Aeronautics and Space Administration. [insert date - e.g. 10 Aug. 2016] http://science.nasa.gov/ems/02_anatomy

Discover More Topics From NASA

James Webb Space Telescope

The image is divided horizontally by an undulating line between a cloudscape forming a nebula along the bottom portion and a comparatively clear upper portion. Speckled across both portions is a starfield, showing innumerable stars of many sizes. The smallest of these are small, distant, and faint points of light. The largest of these appear larger, closer, brighter, and more fully resolved with 8-point diffraction spikes. The upper portion of the image is blueish, and has wispy translucent cloud-like streaks rising from the nebula below. The orangish cloudy formation in the bottom half varies in density and ranges from translucent to opaque. The stars vary in color, the majority of which have a blue or orange hue. The cloud-like structure of the nebula contains ridges, peaks, and valleys – an appearance very similar to a mountain range. Three long diffraction spikes from the top right edge of the image suggest the presence of a large star just out of view.

Perseverance Rover

travel through vacuum of space

Parker Solar Probe

travel through vacuum of space

What is the speed of light?

The speed of light is the speed limit of the universe. Or is it?

graphic representing the speed of light showing lines of light of different colors; blue, green, yellow and white.

What is a light-year?

  • Speed of light FAQs
  • Special relativity
  • Faster than light
  • Slowing down light
  • Faster-than-light travel

Bibliography

The speed of light traveling through a vacuum is exactly 299,792,458 meters (983,571,056 feet) per second. That's about 186,282 miles per second — a universal constant known in equations as "c," or light speed. 

According to physicist Albert Einstein 's theory of special relativity , on which much of modern physics is based, nothing in the universe can travel faster than light. The theory states that as matter approaches the speed of light, the matter's mass becomes infinite. That means the speed of light functions as a speed limit on the whole universe . The speed of light is so immutable that, according to the U.S. National Institute of Standards and Technology , it is used to define international standard measurements like the meter (and by extension, the mile, the foot and the inch). Through some crafty equations, it also helps define the kilogram and the temperature unit Kelvin .

But despite the speed of light's reputation as a universal constant, scientists and science fiction writers alike spend time contemplating faster-than-light travel. So far no one's been able to demonstrate a real warp drive, but that hasn't slowed our collective hurtle toward new stories, new inventions and new realms of physics.

Related: Special relativity holds up to a high-energy test

A l ight-year is the distance that light can travel in one year — about 6 trillion miles (10 trillion kilometers). It's one way that astronomers and physicists measure immense distances across our universe.

Light travels from the moon to our eyes in about 1 second, which means the moon is about 1 light-second away. Sunlight takes about 8 minutes to reach our eyes, so the sun is about 8 light minutes away. Light from Alpha Centauri , which is the nearest star system to our own, requires roughly 4.3 years to get here, so Alpha Centauri is 4.3 light-years away.

"To obtain an idea of the size of a light-year, take the circumference of the Earth (24,900 miles), lay it out in a straight line, multiply the length of the line by 7.5 (the corresponding distance is one light-second), then place 31.6 million similar lines end to end," NASA's Glenn Research Center says on its website . "The resulting distance is almost 6 trillion (6,000,000,000,000) miles!"

Stars and other objects beyond our solar system lie anywhere from a few light-years to a few billion light-years away. And everything astronomers "see" in the distant universe is literally history. When astronomers study objects that are far away, they are seeing light that shows the objects as they existed at the time that light left them. 

This principle allows astronomers to see the universe as it looked after the Big Bang , which took place about 13.8 billion years ago. Objects that are 10 billion light-years away from us appear to astronomers as they looked 10 billion years ago — relatively soon after the beginning of the universe — rather than how they appear today.

Related: Why the universe is all history

Speed of light FAQs answered by an expert

We asked Rob Zellem, exoplanet-hunter and staff scientist at NASA's Jet Propulsion Lab, a few frequently asked questions about the speed of light. 

Dr. Rob Zellem is a staff scientist at NASA's Jet Propulsion Laboratory, a federally funded research and development center operated by the California Institute of Technology. Rob is the project lead for Exoplanet Watch, a citizen science project to observe exoplanets, planets outside of our own solar system, with small telescopes. He is also the Science Calibration lead for the Nancy Grace Roman Space Telescope's Coronagraph Instrument, which will directly image exoplanets. 

What is faster than the speed of light?

Nothing! Light is a "universal speed limit" and, according to Einstein's theory of relativity, is the fastest speed in the universe: 300,000 kilometers per second (186,000 miles per second). 

Is the speed of light constant?

The speed of light is a universal constant in a vacuum, like the vacuum of space. However, light *can* slow down slightly when it passes through an absorbing medium, like water (225,000 kilometers per second = 140,000 miles per second) or glass (200,000 kilometers per second = 124,000 miles per second). 

Who discovered the speed of light?

One of the first measurements of the speed of light was by Rømer in 1676 by observing the moons of Jupiter . The speed of light was first measured to high precision in 1879 by the Michelson-Morley Experiment. 

How do we know the speed of light?

Rømer was able to measure the speed of light by observing eclipses of Jupiter's moon Io. When Jupiter was closer to Earth, Rømer noted that eclipses of Io occurred slightly earlier than when Jupiter was farther away. Rømer attributed this effect due the time it takes for light to travel over the longer distance when Jupiter was farther from the Earth. 

How did we learn the speed of light?

Galileo Galilei is credited with discovering the first four moons of Jupiter.

As early as the 5th century BC, Greek philosophers like Empedocles and Aristotle disagreed on the nature of light speed. Empedocles proposed that light, whatever it was made of, must travel and therefore, must have a rate of travel. Aristotle wrote a rebuttal of Empedocles' view in his own treatise, On Sense and the Sensible , arguing that light, unlike sound and smell, must be instantaneous. Aristotle was wrong, of course, but it would take hundreds of years for anyone to prove it. 

In the mid 1600s, the Italian astronomer Galileo Galilei stood two people on hills less than a mile apart. Each person held a shielded lantern. One uncovered his lantern; when the other person saw the flash, he uncovered his too. But Galileo's experimental distance wasn't far enough for his participants to record the speed of light. He could only conclude that light traveled at least 10 times faster than sound.

In the 1670s, Danish astronomer Ole Rømer tried to create a reliable timetable for sailors at sea, and according to NASA , accidentally came up with a new best estimate for the speed of light. To create an astronomical clock, he recorded the precise timing of the eclipses of Jupiter's moon , Io, from Earth . Over time, Rømer observed that Io's eclipses often differed from his calculations. He noticed that the eclipses appeared to lag the most when Jupiter and Earth were moving away from one another, showed up ahead of time when the planets were approaching and occurred on schedule when the planets were at their closest or farthest points. This observation demonstrated what we today know as the Doppler effect, the change in frequency of light or sound emitted by a moving object that in the astronomical world manifests as the so-called redshift , the shift towards "redder", longer wavelengths in objects speeding away from us. In a leap of intuition, Rømer determined that light was taking measurable time to travel from Io to Earth. 

Rømer used his observations to estimate the speed of light. Since the size of the solar system and Earth's orbit wasn't yet accurately known, argued a 1998 paper in the American Journal of Physics , he was a bit off. But at last, scientists had a number to work with. Rømer's calculation put the speed of light at about 124,000 miles per second (200,000 km/s).

In 1728, English physicist James Bradley based a new set of calculations on the change in the apparent position of stars caused by Earth's travels around the sun. He estimated the speed of light at 185,000 miles per second (301,000 km/s) — accurate to within about 1% of the real value, according to the American Physical Society .

Two new attempts in the mid-1800s brought the problem back to Earth. French physicist Hippolyte Fizeau set a beam of light on a rapidly rotating toothed wheel, with a mirror set up 5 miles (8 km) away to reflect it back to its source. Varying the speed of the wheel allowed Fizeau to calculate how long it took for the light to travel out of the hole, to the adjacent mirror, and back through the gap. Another French physicist, Leon Foucault, used a rotating mirror rather than a wheel to perform essentially the same experiment. The two independent methods each came within about 1,000 miles per second (1,609 km/s) of the speed of light.

Dr. Albert A. Michelson stands next to a large tube supported by wooden beams.

Another scientist who tackled the speed of light mystery was Poland-born Albert A. Michelson, who grew up in California during the state's gold rush period, and honed his interest in physics while attending the U.S. Naval Academy, according to the University of Virginia . In 1879, he attempted to replicate Foucault's method of determining the speed of light, but Michelson increased the distance between mirrors and used extremely high-quality mirrors and lenses. Michelson's result of 186,355 miles per second (299,910 km/s) was accepted as the most accurate measurement of the speed of light for 40 years, until Michelson re-measured it himself. In his second round of experiments, Michelson flashed lights between two mountain tops with carefully measured distances to get a more precise estimate. And in his third attempt just before his death in 1931, according to the Smithsonian's Air and Space magazine, he built a mile-long depressurized tube of corrugated steel pipe. The pipe simulated a near-vacuum that would remove any effect of air on light speed for an even finer measurement, which in the end was just slightly lower than the accepted value of the speed of light today. 

Michelson also studied the nature of light itself, wrote astrophysicist Ethan Siegal in the Forbes science blog, Starts With a Bang . The best minds in physics at the time of Michelson's experiments were divided: Was light a wave or a particle? 

Michelson, along with his colleague Edward Morley, worked under the assumption that light moved as a wave, just like sound. And just as sound needs particles to move, Michelson and Morley and other physicists of the time reasoned, light must have some kind of medium to move through. This invisible, undetectable stuff was called the "luminiferous aether" (also known as "ether"). 

Though Michelson and Morley built a sophisticated interferometer (a very basic version of the instrument used today in LIGO facilities), Michelson could not find evidence of any kind of luminiferous aether whatsoever. Light, he determined, can and does travel through a vacuum.

"The experiment — and Michelson's body of work — was so revolutionary that he became the only person in history to have won a Nobel Prize for a very precise non-discovery of anything," Siegal wrote. "The experiment itself may have been a complete failure, but what we learned from it was a greater boon to humanity and our understanding of the universe than any success would have been!"

Special relativity and the speed of light

Albert Einstein writing on a blackboard.

Einstein's theory of special relativity unified energy, matter and the speed of light in a famous equation: E = mc^2. The equation describes the relationship between mass and energy — small amounts of mass (m) contain, or are made up of, an inherently enormous amount of energy (E). (That's what makes nuclear bombs so powerful: They're converting mass into blasts of energy.) Because energy is equal to mass times the speed of light squared, the speed of light serves as a conversion factor, explaining exactly how much energy must be within matter. And because the speed of light is such a huge number, even small amounts of mass must equate to vast quantities of energy.

In order to accurately describe the universe, Einstein's elegant equation requires the speed of light to be an immutable constant. Einstein asserted that light moved through a vacuum, not any kind of luminiferous aether, and in such a way that it moved at the same speed no matter the speed of the observer. 

Think of it like this: Observers sitting on a train could look at a train moving along a parallel track and think of its relative movement to themselves as zero. But observers moving nearly the speed of light would still perceive light as moving away from them at more than 670 million mph. (That's because moving really, really fast is one of the only confirmed methods of time travel — time actually slows down for those observers, who will age slower and perceive fewer moments than an observer moving slowly.)

In other words, Einstein proposed that the speed of light doesn't vary with the time or place that you measure it, or how fast you yourself are moving. 

Therefore, objects with mass cannot ever reach the speed of light. If an object ever did reach the speed of light, its mass would become infinite. And as a result, the energy required to move the object would also become infinite: an impossibility.

That means if we base our understanding of physics on special relativity (which most modern physicists do), the speed of light is the immutable speed limit of our universe — the fastest that anything can travel. 

What goes faster than the speed of light?

Although the speed of light is often referred to as the universe's speed limit, the universe actually expands even faster. The universe expands at a little more than 42 miles (68 kilometers) per second for each megaparsec of distance from the observer, wrote astrophysicist Paul Sutter in a previous article for Space.com . (A megaparsec is 3.26 million light-years — a really long way.) 

In other words, a galaxy 1 megaparsec away appears to be traveling away from the Milky Way at a speed of 42 miles per second (68 km/s), while a galaxy two megaparsecs away recedes at nearly 86 miles per second (136 km/s), and so on. 

"At some point, at some obscene distance, the speed tips over the scales and exceeds the speed of light, all from the natural, regular expansion of space," Sutter explained. "It seems like it should be illegal, doesn't it?"

Special relativity provides an absolute speed limit within the universe, according to Sutter, but Einstein's 1915 theory regarding general relativity allows different behavior when the physics you're examining are no longer "local."

"A galaxy on the far side of the universe? That's the domain of general relativity, and general relativity says: Who cares! That galaxy can have any speed it wants, as long as it stays way far away, and not up next to your face," Sutter wrote. "Special relativity doesn't care about the speed — superluminal or otherwise — of a distant galaxy. And neither should you."

Does light ever slow down?

A sparkling diamond amongst dark coal-like rock.

Light in a vacuum is generally held to travel at an absolute speed, but light traveling through any material can be slowed down. The amount that a material slows down light is called its refractive index. Light bends when coming into contact with particles, which results in a decrease in speed.

For example, light traveling through Earth's atmosphere moves almost as fast as light in a vacuum, slowing down by just three ten-thousandths of the speed of light. But light passing through a diamond slows to less than half its typical speed, PBS NOVA reported. Even so, it travels through the gem at over 277 million mph (almost 124,000 km/s) — enough to make a difference, but still incredibly fast.

Light can be trapped — and even stopped — inside ultra-cold clouds of atoms, according to a 2001 study published in the journal Nature . More recently, a 2018 study published in the journal Physical Review Letters proposed a new way to stop light in its tracks at "exceptional points," or places where two separate light emissions intersect and merge into one.

Researchers have also tried to slow down light even when it's traveling through a vacuum. A team of Scottish scientists successfully slowed down a single photon, or particle of light, even as it moved through a vacuum, as described in their 2015 study published in the journal Science . In their measurements, the difference between the slowed photon and a "regular" photon was just a few millionths of a meter, but it demonstrated that light in a vacuum can be slower than the official speed of light. 

Can we travel faster than light?

— Spaceship could fly faster than light

— Here's what the speed of light looks like in slow motion

— Why is the speed of light the way it is?

Science fiction loves the idea of "warp speed." Faster-than-light travel makes countless sci-fi franchises possible, condensing the vast expanses of space and letting characters pop back and forth between star systems with ease. 

But while faster-than-light travel isn't guaranteed impossible, we'd need to harness some pretty exotic physics to make it work. Luckily for sci-fi enthusiasts and theoretical physicists alike, there are lots of avenues to explore.

All we have to do is figure out how to not move ourselves — since special relativity would ensure we'd be long destroyed before we reached high enough speed — but instead, move the space around us. Easy, right? 

One proposed idea involves a spaceship that could fold a space-time bubble around itself. Sounds great, both in theory and in fiction.

"If Captain Kirk were constrained to move at the speed of our fastest rockets, it would take him a hundred thousand years just to get to the next star system," said Seth Shostak, an astronomer at the Search for Extraterrestrial Intelligence (SETI) Institute in Mountain View, California, in a 2010 interview with Space.com's sister site LiveScience . "So science fiction has long postulated a way to beat the speed of light barrier so the story can move a little more quickly."

Without faster-than-light travel, any "Star Trek" (or "Star War," for that matter) would be impossible. If humanity is ever to reach the farthest — and constantly expanding — corners of our universe, it will be up to future physicists to boldly go where no one has gone before.

Additional resources

For more on the speed of light, check out this fun tool from Academo that lets you visualize how fast light can travel from any place on Earth to any other. If you’re more interested in other important numbers, get familiar with the universal constants that define standard systems of measurement around the world with the National Institute of Standards and Technology . And if you’d like more on the history of the speed of light, check out the book " Lightspeed: The Ghostly Aether and the Race to Measure the Speed of Light " (Oxford, 2019) by John C. H. Spence.

Aristotle. “On Sense and the Sensible.” The Internet Classics Archive, 350AD. http://classics.mit.edu/Aristotle/sense.2.2.html .

D’Alto, Nick. “The Pipeline That Measured the Speed of Light.” Smithsonian Magazine, January 2017. https://www.smithsonianmag.com/air-space-magazine/18_fm2017-oo-180961669/ .

Fowler, Michael. “Speed of Light.” Modern Physics. University of Virginia. Accessed January 13, 2022. https://galileo.phys.virginia.edu/classes/252/spedlite.html#Albert%20Abraham%20Michelson .

Giovannini, Daniel, Jacquiline Romero, Václav Potoček, Gergely Ferenczi, Fiona Speirits, Stephen M. Barnett, Daniele Faccio, and Miles J. Padgett. “Spatially Structured Photons That Travel in Free Space Slower than the Speed of Light.” Science, February 20, 2015. https://www.science.org/doi/abs/10.1126/science.aaa3035 .

Goldzak, Tamar, Alexei A. Mailybaev, and Nimrod Moiseyev. “Light Stops at Exceptional Points.” Physical Review Letters 120, no. 1 (January 3, 2018): 013901. https://doi.org/10.1103/PhysRevLett.120.013901 . 

Hazen, Robert. “What Makes Diamond Sparkle?” PBS NOVA, January 31, 2000. https://www.pbs.org/wgbh/nova/article/diamond-science/ . 

“How Long Is a Light-Year?” Glenn Learning Technologies Project, May 13, 2021. https://www.grc.nasa.gov/www/k-12/Numbers/Math/Mathematical_Thinking/how_long_is_a_light_year.htm . 

American Physical Society News. “July 1849: Fizeau Publishes Results of Speed of Light Experiment,” July 2010. http://www.aps.org/publications/apsnews/201007/physicshistory.cfm . 

Liu, Chien, Zachary Dutton, Cyrus H. Behroozi, and Lene Vestergaard Hau. “Observation of Coherent Optical Information Storage in an Atomic Medium Using Halted Light Pulses.” Nature 409, no. 6819 (January 2001): 490–93. https://doi.org/10.1038/35054017 . 

NIST. “Meet the Constants.” October 12, 2018. https://www.nist.gov/si-redefinition/meet-constants . 

Ouellette, Jennifer. “A Brief History of the Speed of Light.” PBS NOVA, February 27, 2015. https://www.pbs.org/wgbh/nova/article/brief-history-speed-light/ . 

Shea, James H. “Ole Ro/Mer, the Speed of Light, the Apparent Period of Io, the Doppler Effect, and the Dynamics of Earth and Jupiter.” American Journal of Physics 66, no. 7 (July 1, 1998): 561–69. https://doi.org/10.1119/1.19020 . 

Siegel, Ethan. “The Failed Experiment That Changed The World.” Forbes, April 21, 2017. https://www.forbes.com/sites/startswithabang/2017/04/21/the-failed-experiment-that-changed-the-world/ . 

Stern, David. “Rømer and the Speed of Light,” October 17, 2016. https://pwg.gsfc.nasa.gov/stargaze/Sun4Adop1.htm . 

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Vicky Stein is a science writer based in California. She has a bachelor's degree in ecology and evolutionary biology from Dartmouth College and a graduate certificate in science writing from the University of California, Santa Cruz (2018). Afterwards, she worked as a news assistant for PBS NewsHour, and now works as a freelancer covering anything from asteroids to zebras. Follow her most recent work (and most recent pictures of nudibranchs) on Twitter. 

'Stellar tanning salon' brings light of alien suns to Earth

Tour the famous 'Pillars of Creation' with gorgeous new 3D views from Hubble and JWST (video)

Mystery of dead stars' glitching 'heartbeats' could have a twisted solution

Most Popular

  • 2 China launches communications satellite on 30th mission of the year (video)
  • 3 China's Shenzhou 18 astronauts prep for 2nd spacewalk (video)
  • 4 SpaceX launches 20 Starlink satellites from Florida early on July 3 after delay (video)
  • 5 Scientists finally found 2 of the Milky Way's missing satellite galaxies. What could this mean for astronomy?

travel through vacuum of space

Lots of galaxies shown as small points of light against a dark backdrop.

Why isn’t there any sound in space? An astronomer explains why in space no one can hear you scream

travel through vacuum of space

University Distinguished Professor of Astronomy, University of Arizona

Disclosure statement

Chris Impey receives funding from the National Science Foundation.

University of Arizona provides funding as a member of The Conversation US.

View all partners

travel through vacuum of space

Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to [email protected] .

How far can sound travel through space, since it’s so empty? Is there an echo in space? – Jasmine, age 14, Everson, Washington

In space, no one can hear you scream.

You may have heard this saying. It’s the tagline from the famous 1979 science fiction movie “ Alien .” It’s a scary thought, but is it true? The simple answer is yes, no one can hear you scream in space because there is no sound or echo in space.

I’m a professor of astronomy , which means I study space and how it works. Space is silent – for the most part.

How sound works

To understand why there’s no sound in space, first consider how sound works. Sound is a wave of energy that moves through a solid, a liquid or a gas.

Sound is a compression wave . The energy created when your vocal cords vibrate slightly compresses the air in your throat, and the compressed energy travels outward.

A good analogy for sound is a Slinky toy . If you stretch out a Slinky and push hard on one end, a compression wave travels down the Slinky.

When you talk, your vocal cords vibrate. They jostle air molecules in your throat above your vocal cords, which in turn jostle or bump into their neighbors, causing a sound to come out of your mouth.

Sound moves through air the same way it moves through your throat. Air molecules near your mouth bump into their neighbors, which in turn bump into their neighbors, and the sound moves through the air. The sound wave travels quickly , about 760 miles per hour (1,223 kilometers per hour), which is faster than a commercial jet.

Space is a vacuum

So what about in space?

Space is a vacuum, which means it contains almost no matter. The word vacuum comes from the Latin word for empty .

Sound is carried by atoms and molecules. In space, with no atoms or molecules to carry a sound wave, there’s no sound. There’s nothing to get in sound’s way out in space, but there’s nothing to carry it, so it doesn’t travel at all. No sound also means no echo. An echo happens when a sound wave hits a hard, flat surface and bounces back in the direction it came from.

By the way, if you were caught in space outside your spacecraft with no spacesuit, the fact that no one could hear your cry for help is the least of your problems. Any air you still had in your lungs would expand because it was at higher pressure than the vacuum outside. Your lungs would rupture. In a mere 10 to 15 seconds , you’d be unconscious due to a lack of oxygen.

Sound in the solar system

Scientists have wondered how human voices would sound on our nearest neighboring planets, Venus and Mars. This experiment is hypothetical because Mars is usually below freezing , and its atmosphere is thin, unbreathable carbon dioxide . Venus is even worse – its air is hot enough to melt lead, with a thick carbon dioxide atmosphere.

On Mars, your voice would sound tinny and hollow, like the sound of a piccolo . On Venus , the pitch of your voice would be much deeper, like the sound of a booming bass guitar. The reason is the thickness of the atmosphere. On Mars the thin air creates a high-pitched sound, and on Venus the thick air creates a low-pitched sound. The team that worked this out simulated other solar system sounds , like a waterfall on Saturn’s moon Titan.

Deep space sounds

While space is a good enough vacuum that normal sound can’t travel through it, it’s actually not a perfect vacuum, and it does have some particles floating through it.

Beyond the Earth and its atmosphere, there are five particles in a typical cubic centimeter – the volume of a sugar cube – that are mostly hydrogen atoms. By contrast, the air you are breathing is 10 billion billion (10 19) times more dense. The density goes down with distance from the Sun, and in the space between stars there are 0.1 particles per cubic centimeter. In vast voids between galaxies , it is a million times lower still – fantastically empty.

The voids of space are kept very hot by radiation from stars. The very spread-out matter found there is in a physical state called a plasma .

A plasma is a gas in which electrons are separated from protons. In a plasma, the physics of sound waves get complicated . Waves travel much faster in this low-density medium, and their wavelength is much longer.

In 2022, NASA released a spectacular example of sound in space . It used X-ray data to make an audible recording that represents the way a massive black hole stirs up plasma in the Perseus galaxy cluster, 250 million light years from Earth. The black hole itself emits no sound, but the diffuse plasma around it carries very long wavelength sound waves.

The natural sound is far too low a frequency for the human ear to hear, 57 octaves below middle C, which is the middle note on a piano and in the middle of the range of sound people can hear. But after raising the frequency to the audible range, the result is chilling – it’s the sound of a black hole growling in deep space.

Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to [email protected] . Please tell us your name, age and the city where you live.

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.

  • Astrophysics
  • Curious Kids
  • Curious Kids US
  • Vocal cords

travel through vacuum of space

Research Officer

travel through vacuum of space

Lecturer in Indigenous Health (Identified)

travel through vacuum of space

Social Media Producer

travel through vacuum of space

PhD Scholarship

travel through vacuum of space

Senior Lecturer, HRM or People Analytics

Find Study Materials for

  • Explanations
  • Business Studies
  • Combined Science
  • Computer Science
  • Engineering
  • English literature
  • Environmental Science
  • Human Geography
  • Macroeconomics
  • Microeconomics
  • Social Studies
  • Browse all subjects
  • Textbook Solutions
  • Read our Magazine

Create Study Materials

  • Flashcards Create and find the best flashcards.
  • Notes Create notes faster than ever before.
  • Study Sets Everything you need for your studies in one place.
  • Study Plans Stop procrastinating with our smart planner features.
  • Electromagnetic Waves in a Vacuum

Delve into the fascinating world of electromagnetic waves in a vacuum. This educational piece unravels the definition, characteristics and examples of such waves, providing an enlightening perspective on their everyday applications. Discover the speed at which electromagnetic waves travel in a vacuum and the factors influencing this speed. Further, dig deeper with an in-depth analysis on sinusoidal electromagnetic waves propagating in a vacuum and their unique properties. This resource is sure to enrich your comprehension of physics by shedding light on the unseen yet profound phenomena of electromagnetic waves in a vacuum.

Electromagnetic Waves in a Vacuum

Create learning materials about Electromagnetic Waves in a Vacuum with our free learning app!

  • Instand access to millions of learning materials
  • Flashcards, notes, mock-exams and more
  • Everything you need to ace your exams
  • Astrophysics
  • Atoms and Radioactivity
  • Circular Motion and Gravitation
  • Classical Mechanics
  • Conservation of Energy and Momentum
  • Electric Charge Field and Potential
  • Electricity
  • Electricity and Magnetism
  • Electromagnetism
  • 1D Wave Equation
  • 3 Phase Generator
  • 3D Delta Function
  • Ampere's Law
  • Ampere's Law Magnetic Field
  • Auxiliary Field
  • Biot Savart Law
  • Bipolar Junction Transistor
  • Bound Charge
  • Bound Current
  • Boundary Conditions for Electromagnetic Fields
  • Coulomb Gauge
  • Curl of the Magnetic Field
  • Current Source
  • Current Sources in Parallel
  • Current Sources in Series
  • Current to Magnetic Field
  • Delta Operator
  • Dielectric Boundary Conditions
  • Dielectric Constant
  • Differential Calculus
  • Diode Model
  • Displacement Vector
  • Divergence of Electrostatic Field
  • Divergence of Magnetic Field
  • Divergence of a Vector Field
  • Electric Dipole Radiation
  • Electric Field of a Continous Charge Distribution
  • Electric Field of a Dipole
  • Electric Susceptibility
  • Electromagnetic Field
  • Electromagnetic Field Tensor
  • Electromagnetic Four Potential
  • Electromagnetic Potential Definition
  • Electromagnetic Sources
  • Electromagnetic Waves in Matter
  • Electromotive Force
  • Electrostatic Potential Energy
  • Electrostatics Boundary Conditions
  • Electrostatics in Vacuum
  • Energy in Dielectric System
  • Energy in a Magnetic Field
  • FET Configuration
  • Ferromagnetism
  • Force on a Conductor
  • Forces on Dielectrics
  • Gauss Theorem
  • Gradient Theorem
  • Helmholtz Theorem
  • Ideal Diode
  • Induced Electric Field Formula
  • Induced Surface Charge
  • Integral Calculus
  • Jefimenko's Equations
  • Laplace's Equation
  • Lienard Wiechert Potential
  • Line Integral
  • Linear Dielectric
  • Linear Media
  • Lorentz Force Law
  • Lorentz Transformations
  • Magnetic Charge
  • Magnetic Dipole Radiation
  • Magnetic Moment
  • Magnetic Permeability
  • Magnetic Scalar Potential
  • Magnetic Susceptibility
  • Magnetic Vector Potential
  • Magnetization
  • Magnetostatic in Matter
  • Magnetostatics
  • Maxwell's Equations
  • Maxwell's Equations Differential Form
  • Maxwell's Equations Integral Form
  • Method of Images
  • Monochromatic Wave
  • Motional EMF
  • Motor Characteristics
  • Multipole Expansion
  • Mutual Inductance
  • NPN and PNP Transistor
  • One Dimensional Laplace Equation
  • PN Junction
  • Poisson Equation
  • Polar Molecule
  • Polarization Vector
  • Proper Time
  • Real Transformer
  • Rectangular Waveguide
  • Relativistic Dynamics
  • Relativistic Electrodynamics
  • Relativistic Kinematics
  • Relativistic Mechanics
  • Relativistic Momentum
  • Resonant Cavity
  • Retarded Potential
  • Scalar and Vector Fields
  • Semiconductor Diode
  • Simple Motor
  • Sinusoidal Wave
  • Spherical Coordinates
  • Stokes Theorem
  • Surface Charge
  • Surface Integral
  • The Dirac Delta Function
  • The Transfer of Energy by Electromagnetic Waves
  • Three Dimensional Laplace Equation
  • Torque on Magnetic Dipole
  • Two Dimensional Laplace Equation
  • Uniqueness Theorem
  • Vector Algebra
  • Voltage Source
  • Voltage Sources in Parallel
  • Voltage Sources in Series
  • Volume Integral
  • Work in Electrostatics
  • Electrostatics
  • Energy Physics
  • Engineering Physics
  • Famous Physicists
  • Fields in Physics
  • Fundamentals of Physics
  • Further Mechanics and Thermal Physics
  • Geometrical and Physical Optics
  • Kinematics Physics
  • Linear Momentum
  • Magnetism and Electromagnetic Induction
  • Measurements
  • Mechanics and Materials
  • Medical Physics
  • Modern Physics
  • Nuclear Physics
  • Oscillations
  • Particle Model of Matter
  • Physical Quantities And Units
  • Physics of Motion
  • Quantum Physics
  • Rotational Dynamics
  • Scientific Method Physics
  • Solid State Physics
  • Space Physics
  • Thermodynamics
  • Torque and Rotational Motion
  • Translational Dynamics
  • Turning Points in Physics
  • Wave Optics
  • Waves Physics
  • Work Energy and Power

Understanding Electromagnetic Waves in a Vacuum

Definition of electromagnetic waves in a vacuum.

An electromagnetic wave in a vacuum refers to a wave constructed of oscillating electric and magnetic fields. It propagates through space, void of matter, which is what we refer to as a vacuum. They are always travelling at a constant speed, which is known as the speed of light, approximately \(3 \times 10^8\) metres per second.

It's interesting to know that electromagnetic waves, unlike mechanical waves, don't require a medium to travel. This can be proven by the fact that light can travel from the sun to earth, through the vacuum of space.

Characteristics of Electromagnetic Waves in a Vacuum

  • Wavelength: The distance over which the wave's shape repeats. It is typically measured in meters.
  • Frequency: The number of occurrences of a repeating event per unit of time, typically calculated in hertz (Hz).

Examples of Electromagnetic Waves in a Vacuum

Everyday applications of electromagnetic waves in a vacuum.

Electromagnetic waves have everyday applications that you might not even notice. For example, radio waves are used for wireless communications such as television, mobile phones, and radio broadcasts. Microwaves, as the name suggests, are used in microwave ovens for cooking. Infrared is used in thermal imaging, remote controls, and meteorology. Visible light is utilised for human sight - the most basic of applications. Ultraviolet is used in tanning lamps and black lights, and X-rays are utilised in hospitals for imaging purposes. Gamma rays, finally, are used in cancer treatment to kill cancerous cells.

The Speed of Electromagnetic Waves in a Vacuum

How fast do electromagnetic waves travel in a vacuum, factors affecting the speed of electromagnetic waves in a vacuum, in-depth analysis on properties of electromagnetic waves in a vacuum, a sinusoidal electromagnetic wave is propagating in vacuum: what it means.

The wave number \(k\) relates to the wavelength \(\lambda\) by the relation \(k = \frac{2\pi}{\lambda}\), and the frequency \(\omega\) relates to its period \(T\) with \(\omega = \frac{2\pi}{T}\).

Key Properties of Electromagnetic Waves in a Vacuum

  • Constant Speed: Regardless of their frequency or wavelength, all electromagnetic waves in a vacuum travel at the same, constant speed, typically outlined as the speed of light \(c = 3 \times 10^8\) ms\(^{-1}\).
  • Transverse Nature: Electromagnetic waves are transverse waves, with their oscillations perpendicular to the direction of energy transfer or propagation. Therefore, electromagnetic waves have the ability to demonstrate phenomena such as polarisation.
  • No Material Medium: They do not require a material medium for propagation and can travel through the vacuum of outer space.
  • Energy Transfer: Electromagnetic waves carry energy - the energy carried per unit time is referred to as the intensity of the wave.
  • Wave-Particle Duality: Electromagnetic waves exhibit a phenomenon known as wave-particle duality, meaning they can exhibit properties of both particles and waves.

Exploring Unique Properties of Electromagnetic Waves in a Vacuum

Electromagnetic waves in a vacuum - key takeaways.

  • An electromagnetic wave in a vacuum refers to a wave made up of oscillating electric and magnetic fields which can transport energy without a medium. It always travels at a constant speed, known as the speed of light, roughly \(3 \times 10^8\) metres per second.
  • Two primary characteristics of electromagnetic waves in a vacuum are their wavelength, the distance over which the wave's shape repeats, and frequency, the number of occurrences of a repeating event per unit of time. The relationship between these characteristics and the speed of electromagnetic waves in a vacuum, the speed of light, is represented by the formula \(c = \lambda v\).
  • Examples of electromagnetic waves include radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays. Each type has different wavelengths and frequencies but they all move at the same speed, the speed of light, in a vacuum.
  • The speed at which electromagnetic waves travel in a vacuum is always constant, represented by the speed of light, approximately \(3 \times 10^8\) metres per second. This constancy is crucial in the derivation of Einstein's equation \(E=mc^2\), which links the concepts of mass and energy.
  • A sinusoidal electromagnetic wave propagating in a vacuum is a propagating wave whose oscillations follow a sinusoidal pattern. These waves have unique properties including constant speed, transverse nature, capability to travel without a medium, and ability to carry energy. Also, they exhibit wave-particle duality, meaning they can exhibit properties of both particles and waves.

Flashcards in Electromagnetic Waves in a Vacuum 42

What is the definition of an electromagnetic wave in a vacuum?

An electromagnetic wave in a vacuum refers to a wave made of oscillating electric and magnetic fields that propagates through a space devoid of matter (a vacuum) at a constant speed known as the speed of light, approximately \(3 \times 10^8\) metres per second.

List some characteristics of electromagnetic waves in a vacuum.

Electromagnetic waves in a vacuum have two primary characteristics: wavelength, which is the distance over which the wave's shape repeats, and frequency, the number of occurrences of a repeating event per unit of time.

What examples of electromagnetic waves can travel through a vacuum?

Several types of electromagnetic waves can travel through a vacuum, including radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays.

What are some everyday applications of electromagnetic waves in a vacuum?

Everyday applications of electromagnetic waves in a vacuum include radio waves for wireless communication, microwaves for cooking, infrared for remote controls, visible light for sight, ultraviolet for tanning lamps, X-rays for medical imaging, and gamma rays for cancer treatment.

What is the speed of electromagnetic waves in a vacuum?

The speed of electromagnetic waves in a vacuum is always constant and is approximately 3 x 10^8 metres per second or 300,000 kilometres per second, also known as the speed of light.

What happens when electromagnetic waves pass through a medium other than a vacuum?

Electromagnetic waves slow down when they pass through a medium other than a vacuum due to the matter present in these mediums, causing effects like refraction and reflection.

Electromagnetic Waves in a Vacuum

Learn with 42 Electromagnetic Waves in a Vacuum flashcards in the free Vaia app

We have 14,000 flashcards about Dynamic Landscapes.

Already have an account? Log in

Frequently Asked Questions about Electromagnetic Waves in a Vacuum

Test your knowledge with multiple choice flashcards.

Electromagnetic Waves in a Vacuum

Join the Vaia App and learn efficiently with millions of flashcards and more!

Keep learning, you are doing great.

Discover learning materials with the free Vaia app

1

Vaia is a globally recognized educational technology company, offering a holistic learning platform designed for students of all ages and educational levels. Our platform provides learning support for a wide range of subjects, including STEM, Social Sciences, and Languages and also helps students to successfully master various tests and exams worldwide, such as GCSE, A Level, SAT, ACT, Abitur, and more. We offer an extensive library of learning materials, including interactive flashcards, comprehensive textbook solutions, and detailed explanations. The cutting-edge technology and tools we provide help students create their own learning materials. StudySmarter’s content is not only expert-verified but also regularly updated to ensure accuracy and relevance.

Electromagnetic Waves in a Vacuum

Vaia Editorial Team

Team Physics Teachers

  • 11 minutes reading time
  • Checked by Vaia Editorial Team

Study anywhere. Anytime.Across all devices.

Create a free account to save this explanation..

Save explanations to your personalised space and access them anytime, anywhere!

By signing up, you agree to the Terms and Conditions and the Privacy Policy of Vaia.

Sign up to highlight and take notes. It’s 100% free.

Join over 22 million students in learning with our Vaia App

The first learning app that truly has everything you need to ace your exams in one place

  • Flashcards & Quizzes
  • AI Study Assistant
  • Study Planner
  • Smart Note-Taking

Join over 22 million students in learning with our Vaia App

Privacy Overview

Get unlimited access with a free vaia account..

  • Instant access to millions of learning materials.
  • Flashcards, notes, mock-exams, AI tools and more.
  • Everything you need to ace your exams.

Second Popup Banner

Electricity – Magnetism

How do electromagnetic waves travel in a vacuum?

Explore how electromagnetic waves propagate in a vacuum, their unique characteristics, and their critical role in interstellar communication.

Understanding Electromagnetic Waves in Vacuum

Electromagnetic waves, a fundamental aspect of the physical world, include a broad spectrum of waves such as radio waves, microwaves, infrared waves, visible light, ultraviolet light, X-rays, and gamma rays. In a vacuum, the propagation of these waves becomes particularly interesting due to the lack of a medium.

Propagating Electromagnetic Waves

Electromagnetic waves are created when an electric charge vibrates or accelerates. Each wave is characterized by an electric and a magnetic field. These fields oscillate perpendicular to each other and to the direction of the wave’s motion, forming a three-dimensional wave pattern.

Crucially, unlike mechanical waves (such as sound waves), electromagnetic waves do not require a medium to propagate. This allows them to travel in the emptiness of space – a vacuum – at a constant speed, known as the speed of light (c). In a vacuum, this speed is approximately 299,792 kilometers per second.

Why Do Electromagnetic Waves Travel in Vacuum?

Understanding why electromagnetic waves can travel in a vacuum involves delving into the fundamentals of electromagnetic theory, most comprehensively described by James Clerk Maxwell’s equations.

Maxwell’s equations show that a changing electric field generates a changing magnetic field, and vice versa. When an electric charge vibrates, it creates a changing electric field. This changing electric field in turn generates a changing magnetic field, which then induces another changing electric field. This process repeats, allowing the electromagnetic wave to propagate forward as a self-sustaining entity, even in a vacuum.

Impact on Interstellar Communication

The ability of electromagnetic waves to propagate in a vacuum has profound implications for interstellar communication and observation. For instance, light from distant stars and galaxies reaches Earth across the vacuum of space, providing astronomers with invaluable data about the universe. Similarly, radio signals sent from Earth can travel through space to reach distant spacecraft.

In conclusion, electromagnetic waves exhibit fascinating behavior in a vacuum, propagating as self-sustaining entities due to the mutual generation of electric and magnetic fields. This characteristic enables them to serve as crucial messengers across the vast expanses of the cosmos.

Related Posts:

Ultraviolet Radiation

The primary purpose of this project is to help the public to learn some exciting and important information about electricity and magnetism.

Privacy Policy

Our Website follows all legal requirements to protect your privacy. Visit our  Privacy Policy  page.

The Cookies Statement  is part of our Privacy Policy.

Editorial note

The information contained on this website is for general information purposes only. This website does not use any proprietary data. Visit our  Editorial note.

Copyright Notice

It’s simple:

1) You may use almost everything for non-commercial and educational use.

2) You may not distribute or commercially exploit the content, especially on another website.

travel through vacuum of space

Universe Today

Universe Today

Space and astronomy news

travel through vacuum of space

How Does Light Travel?

Ever since Democritus – a Greek philosopher who lived between the 5th and 4th century’s BCE – argued that all of existence was made up of tiny indivisible atoms, scientists have been speculating as to the true nature of light. Whereas scientists ventured back and forth between the notion that light was a particle or a wave until the modern era, the 20th century led to breakthroughs that showed us that it behaves as both.

These included the discovery of the electron, the development of quantum theory, and Einstein’s Theory of Relativity . However, there remains many unanswered questions about light, many of which arise from its dual nature. For instance, how is it that light can be apparently without mass, but still behave as a particle? And how can it behave like a wave and pass through a vacuum, when all other waves require a medium to propagate?

Theory of Light to the 19th Century:

During the Scientific Revolution, scientists began moving away from Aristotelian scientific theories that had been seen as accepted canon for centuries. This included rejecting Aristotle’s theory of light, which viewed it as being a disturbance in the air (one of his four “elements” that composed matter), and embracing the more mechanistic view that light was composed of indivisible atoms.

In many ways, this theory had been previewed by atomists of Classical Antiquity – such as Democritus and Lucretius – both of whom viewed light as a unit of matter given off by the sun. By the 17th century, several scientists emerged who accepted this view, stating that light was made up of discrete particles (or “corpuscles”). This included Pierre Gassendi, a contemporary of René Descartes, Thomas Hobbes, Robert Boyle, and most famously, Sir Isaac Newton .

The first edition of Newton's Opticks: or, a treatise of the reflexions, refractions, inflexions and colours of light (1704). Credit: Public Domain.

Newton’s corpuscular theory was an elaboration of his view of reality as an interaction of material points through forces. This theory would remain the accepted scientific view for more than 100 years, the principles of which were explained in his 1704 treatise “ Opticks, or, a Treatise of the Reflections, Refractions, Inflections, and Colours of Light “. According to Newton, the principles of light could be summed as follows:

  • Every source of light emits large numbers of tiny particles known as corpuscles in a medium surrounding the source.
  • These corpuscles are perfectly elastic, rigid, and weightless.

This represented a challenge to “wave theory”, which had been advocated by 17th century Dutch astronomer Christiaan Huygens . . These theories were first communicated in 1678 to the Paris Academy of Sciences and were published in 1690 in his “ Traité de la lumière “ (“ Treatise on Light “). In it, he argued a revised version of Descartes views, in which the speed of light is infinite and propagated by means of spherical waves emitted along the wave front.

Double-Slit Experiment:

By the early 19th century, scientists began to break with corpuscular theory. This was due in part to the fact that corpuscular theory failed to adequately explain the diffraction, interference and polarization of light, but was also because of various experiments that seemed to confirm the still-competing view that light behaved as a wave.

The most famous of these was arguably the Double-Slit Experiment , which was originally conducted by English polymath Thomas Young in 1801 (though Sir Isaac Newton is believed to have conducted something similar in his own time). In Young’s version of the experiment, he used a slip of paper with slits cut into it, and then pointed a light source at them to measure how light passed through it.

According to classical (i.e. Newtonian) particle theory, the results of the experiment should have corresponded to the slits, the impacts on the screen appearing in two vertical lines. Instead, the results showed that the coherent beams of light were interfering, creating a pattern of bright and dark bands on the screen. This contradicted classical particle theory, in which particles do not interfere with each other, but merely collide.

The only possible explanation for this pattern of interference was that the light beams were in fact behaving as waves. Thus, this experiment dispelled the notion that light consisted of corpuscles and played a vital part in the acceptance of the wave theory of light. However subsequent research, involving the discovery of the electron and electromagnetic radiation, would lead to scientists considering yet again that light behaved as a particle too, thus giving rise to wave-particle duality theory.

Electromagnetism and Special Relativity:

Prior to the 19th and 20th centuries, the speed of light had already been determined. The first recorded measurements were performed by Danish astronomer Ole Rømer, who demonstrated in 1676 using light measurements from Jupiter’s moon Io to show that light travels at a finite speed (rather than instantaneously).

Prof. Albert Einstein uses the blackboard as he delivers the 11th Josiah Willard Gibbs lecture at the meeting of the American Association for the Advancement of Science in the auditorium of the Carnegie Institue of Technology Little Theater at Pittsburgh, Pa., on Dec. 28, 1934. Using three symbols, for matter, energy and the speed of light respectively, Einstein offers additional proof of a theorem propounded by him in 1905 that matter and energy are the same thing in different forms. (AP Photo)

By the late 19th century, James Clerk Maxwell proposed that light was an electromagnetic wave, and devised several equations (known as Maxwell’s equations ) to describe how electric and magnetic fields are generated and altered by each other and by charges and currents. By conducting measurements of different types of radiation (magnetic fields, ultraviolet and infrared radiation), he was able to calculate the speed of light in a vacuum (represented as c ).

In 1905, Albert Einstein published “ On the Electrodynamics of Moving Bodies ”, in which he advanced one of his most famous theories and overturned centuries of accepted notions and orthodoxies. In his paper, he postulated that the speed of light was the same in all inertial reference frames, regardless of the motion of the light source or the position of the observer.

Exploring the consequences of this theory is what led him to propose his theory of Special Relativity , which reconciled Maxwell’s equations for electricity and magnetism with the laws of mechanics, simplified the mathematical calculations, and accorded with the directly observed speed of light and accounted for the observed aberrations. It also demonstrated that the speed of light had relevance outside the context of light and electromagnetism.

For one, it introduced the idea that major changes occur when things move close the speed of light, including the time-space frame of a moving body appearing to slow down and contract in the direction of motion when measured in the frame of the observer. After centuries of increasingly precise measurements, the speed of light was determined to be 299,792,458 m/s in 1975.

Einstein and the Photon:

In 1905, Einstein also helped to resolve a great deal of confusion surrounding the behavior of electromagnetic radiation when he proposed that electrons are emitted from atoms when they absorb energy from light. Known as the photoelectric effect , Einstein based his idea on Planck’s earlier work with “black bodies” – materials that absorb electromagnetic energy instead of reflecting it (i.e. white bodies).

At the time, Einstein’s photoelectric effect was attempt to explain the “black body problem”, in which a black body emits electromagnetic radiation due to the object’s heat. This was a persistent problem in the world of physics, arising from the discovery of the electron, which had only happened eight years previous (thanks to British physicists led by J.J. Thompson and experiments using cathode ray tubes ).

At the time, scientists still believed that electromagnetic energy behaved as a wave, and were therefore hoping to be able to explain it in terms of classical physics. Einstein’s explanation represented a break with this, asserting that electromagnetic radiation behaved in ways that were consistent with a particle – a quantized form of light which he named “photons”. For this discovery, Einstein was awarded the Nobel Prize in 1921.

Wave-Particle Duality:

Subsequent theories on the behavior of light would further refine this idea, which included French physicist Louis-Victor de Broglie calculating the wavelength at which light functioned. This was followed by Heisenberg’s “uncertainty principle” (which stated that measuring the position of a photon accurately would disturb measurements of it momentum and vice versa), and Schrödinger’s paradox that claimed that all particles have a “wave function”.

In accordance with quantum mechanical explanation, Schrodinger proposed that all the information about a particle (in this case, a photon) is encoded in its wave function , a complex-valued function roughly analogous to the amplitude of a wave at each point in space. At some location, the measurement of the wave function will randomly “collapse”, or rather “decohere”, to a sharply peaked function. This was illustrated in Schrödinger famous paradox involving a closed box, a cat, and a vial of poison (known as the “ Schrödinger Cat” paradox).

In this illustration, one photon (purple) carries a million times the energy of another (yellow). Some theorists predict travel delays for higher-energy photons, which interact more strongly with the proposed frothy nature of space-time. Yet Fermi data on two photons from a gamma-ray burst fail to show this effect. The animation below shows the delay scientists had expected to observe. Credit: NASA/Sonoma State University/Aurore Simonnet

According to his theory, wave function also evolves according to a differential equation (aka. the Schrödinger equation ). For particles with mass, this equation has solutions; but for particles with no mass, no solution existed. Further experiments involving the Double-Slit Experiment confirmed the dual nature of photons. where measuring devices were incorporated to observe the photons as they passed through the slits.

When this was done, the photons appeared in the form of particles and their impacts on the screen corresponded to the slits – tiny particle-sized spots distributed in straight vertical lines. By placing an observation device in place, the wave function of the photons collapsed and the light behaved as classical particles once more. As predicted by Schrödinger, this could only be resolved by claiming that light has a wave function, and that observing it causes the range of behavioral possibilities to collapse to the point where its behavior becomes predictable.

The development of Quantum Field Theory (QFT) was devised in the following decades to resolve much of the ambiguity around wave-particle duality. And in time, this theory was shown to apply to other particles and fundamental forces of interaction (such as weak and strong nuclear forces). Today, photons are part of the Standard Model of particle physics, where they are classified as boson – a class of subatomic particles that are force carriers and have no mass.

So how does light travel? Basically, traveling at incredible speeds (299 792 458 m/s) and at different wavelengths, depending on its energy. It also behaves as both a wave and a particle, able to propagate through mediums (like air and water) as well as space. It has no mass, but can still be absorbed, reflected, or refracted if it comes in contact with a medium. And in the end, the only thing that can truly divert it, or arrest it, is gravity (i.e. a black hole).

What we have learned about light and electromagnetism has been intrinsic to the revolution which took place in physics in the early 20th century, a revolution that we have been grappling with ever since. Thanks to the efforts of scientists like Maxwell, Planck, Einstein, Heisenberg and Schrodinger, we have learned much, but still have much to learn.

For instance, its interaction with gravity (along with weak and strong nuclear forces) remains a mystery. Unlocking this, and thus discovering a Theory of Everything (ToE) is something astronomers and physicists look forward to. Someday, we just might have it all figured out!

We have written many articles about light here at Universe Today. For example, here’s How Fast is the Speed of Light? , How Far is a Light Year? , What is Einstein’s Theory of Relativity?

If you’d like more info on light, check out these articles from The Physics Hypertextbook and NASA’s Mission Science page.

We’ve also recorded an entire episode of Astronomy Cast all about Interstellar Travel. Listen here, Episode 145: Interstellar Travel .

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)

56 Replies to “How Does Light Travel?”

“HOW DOES LIGHT TRAVEL?”

it travels lightly. 😀

Light doesn’t exist. This is an observation from light’s point of view and not ours. Traveling at the speed of (wait for it) light, absolutely no time passes between leaving it’s source and reaching it’s destination for the photon. This means, to the photon hitting your retina, it is also still on that star you are observing 10 light years away. How is this possible? Maybe John Wheeler was right when he told Richard Feynman that there is only one electron in the universe and it travels forward in time as an electron, then back in time as a positron and every electron we see is the same electron.

MY QUESTION IS: Whether light is a wave , particle or both.. where does it get the energy to move through space/time. In other words is the energy of light infinite? Does it continue on without lose of energy…..forever…….

I believe that Special Relativity says that the energy of light is infinite due to the very fact it has no mass. E=MC^2

In reverse, this is also why something with mass to begin with. If accelerated toward the speed of light, will see their mass and gravity increase to infinite points as they near relativistic speed (it actually starts around 95% with a steep upward curve from there), with a relative slowing to a stop of time.

Join the discussion

Light and the universe are only illusions that are formed in our minds via technology that sends information from the simulation program we’re living in. That information comes in the form of invisible wavelengths that includes wavelengths that we perceive as light. The visible retinas in our eyes are like tiny video screens where these particles are arranged into patterns that form into all the various objects we think are real objects. This information is also converted into thoughts within our minds which are like computer processors that process that information.

We are living in a computer simulation that is much more advanced than anything the characters in the program have built according to the information called the Beast.

Brad,…So You’re suggesting that “life” as we know and call it “is some kind of retro-virus” or “bio-intelligent format” heaped upon a perceived “set of accepted data sets” that are not in sync with each other in most cases with exception to Math 94% of the time….Even then it can vary which suggests Your idea would mean we all live in a fairy tale. That is what you suggest,…right?……

Brad has watched the Matrix too many times.

Correction: Even gravity doesn’t slow light down. Light (EM radiation of any wavelength) always travels at speed c, relative to any local inertial (Lorentz) frame. It could also be noted that the wavelength of an EM wave is not a characteristic of that wave alone; it also depends on the state of motion of the observer. You might even say, “One man’s radio wave is another man’s gamma ray.”

Light actually “slows down” every time it has to travel through anything but a vacuum. Look up Cherenkov radiation to see what happens when light initially travels faster than it can through a particular substance, like water. Light speed is not constant when traveling through any medium except pure vacuum. In fact that is why your pencil looks bent when you drop it in a glass of water. Light bends to find it’s fastest path through any medium, and it slows down in that medium.

if all you scientist could ever get it in your pie brain that there is no time, no light speed, no warping space, no black holes for the purpose of moving through space quickly, no smallest no biggest when it comes to space and that all of everything has always been in existence but not necessarily as it is now. you will never find the smallest because if it exist it has an inside, and you will never find the end of space because it is infinite.

What are you smoking?

The article started out nicely, but I lost interest as mistakes began to appear. First Einstein did not “propose” the photoelectric effect. The photoelectric effect was first observed by Heinrich Hertz in 1887. Einstein used the idea of photons to explain the photoelectric effect and derive the photoelectric equation. Also, Max Plank had already derived the blackbody distribution, by assuming that electromagnetic energy of frequency f could only be emitted in multiples of energy E=hf, by 1900. Einstein’s paper on the photoelectric effect was published in his “miracle” year of 1905. The photoelectric effect has nothing to do with black body radiation.

Einstein did not coin the name “photons” for light quanta, as stated in this article. This term was first used by Arthur Compton in 1928.

I have to say that I do not know what the author of the article means when he says ” calculating the wavelength at which light functioned” in reference to Louis-Victor de Broglie. Louis de Broglie used the dual nature of light to suggest that electrons, previously thought of as particles, also had wave characteristics and used this notion to explain the Bohr orbits in the hydrogen atom.

I gave up on the article after seeing these errors. I’m afraid I have a low tolerance for sloppy writing.

Oh, it’s BCE now, “Before the Common Era” BC has worked for 2000 years but now the PC police have stepped in so as not to offend who? Some Muslims?

mecheng1, you must be very young. BCE has been in used in academia for decades. It’s nothing “new”, just out of your circle of knowledge.

Decades??? Really?? How does that compare to 2000 years?

Only in Euro-centric texts have your assertions been true, McCowen. The rest of the world not influenced by Christianity have used their own calendars and a “0” year or a “year 1” from which to reckon the passage of time, largely based on their own religions or celestial observations.

Over the last century or so, through commerce, most of the world has generally accepted the use of a Western calendar (or use it along with their own for domestic purposes, like we here in the US still use Imperial units of measure that have to be converted to metric for international commerce). So, we are in a “common era” insofar as non-Christian societies are incorporating the Gregorian Calendar and the generally-accepted “year 1” established by that calendar (which is supposed to be the year of Jesus’s birth, but it probably isn’t according to current scholarship). Besides, the Gregorian calendar is an improved derivative of the Roman calendar – even the names of the months come from the Romans.

In short, it is more accurate, as well as respectful, to go with BCE in these global times.

Where is the information carried on a photon hitting my eye(s), or cluster/group/pack of photons hitting my eyes(s), that I see as other distant galaxies and planets going around stars?

That’s the mystery, isn’t it? Even in scattering, light remains coherent enough to convey an enormous amount of information.

Since the miniscule equal masses with opposite charges, that make up the photon structure, interact at 90 degrees, this induces a spin (a finding from the 80’s by the LANL plasma physics program) which creates a centrifugal force that counterbalances the charge attraction of the opposite charges. This establishes a stable structure for energies less than 1.0216 MeV, the pair-formation threshold, separating these “neutrino” sub-components by a specific distance providing wavelengths varying with photon energy. This composite photon propagates transversely at c/n, the speed of light divided by the index of refraction of the material traversed. In spite of the mass being defined as zero, for convenience in calculating atomic masses, there is actually an infinitesimal but non-zero mass for the photon that is required for calculations that describe its properties.

Tim, you poor guy! You have a discombobulated brain! Everything you wrote is just gibberish.

i would like to know the temperature in a black hole…maybe absolute zero? is absolute zero the moment that time stop?

I think the temp inside a black hole would be extremely high since temperature seems to increase with mass. Comparing absolute zero to time stopping is very interesting though. To the observer they would appear the same.

Theoretically there is no temperature in a black hole from any observer POV because time is stopped. Although JALNIN does bring up that point, and he also brings up the point of increasing mass corresponding to increasing energy. Everything in Hawking and Einstein’s equations though, suggest that any energy would be absorbed back by the singularity, so there wouldn’t be any heat. In fact it should be infinitely cold. But time is no more, so technically no heat or energy is emitted anyway from any observers POV. Yet recent images of black holes from Chandra show that they emit powerful Gamma Jets along their spin axis just like Neutron stars, and Pulsars. BTW edison. The accretion disk can reach temperatures of 20MN Kelvin on a feeding SM black hole (quasar). NASA just published an article on it through the Chandra feed a while back.

Light doesn’t travel, it just IS. It is we, the condensed matter, that travels, through time.

Oh really? Is this just your imagination/illusion or you have published a paper on it?

So you don’t believe you travel through time?

I wish I understood just a portion of I just read, love sicence so bad BUT, sighs

It would be easier to understand if it wasn’t pure gibberish written by someone with no science background.

I have two “mind-bending relativity side effects” to share. At least they are mind-bending to me.

1) Light travels the same speed relative to all particles of mass, regardless of how those particles move relative to each other:

I can conceptualize this if we are only talking about two mass-particles/observers and the examples I’ve seen always involve only two observers. But if you have many mass-particles/observers, how does the space-time seem to know to adjust differently for all of them. I am sure i am understanding this correctly as it is a basic concept of special relativity and nobody seems to bring this issue up. But it “bends my mind” when i try to include more than two observers. Maybe you can help.

2) General Relativity’s (“GR”) prediction that the big bang started with “Infinite” energy and now the universe appears to have finite mass energy and Regarding the first effect: How can something infinite turn into something finite? Is the answer that at that early in the universe, quantum takes over and GR’s prediction of infinite mass-energy at the start of the universe is just wrong?

I need to correct a typo in my previous comment. Where i say “i am sure am understanding this correctly” I meant to include the word NOT. so it should read “i am sure am NOT understanding this correctly” Mark L.

Mark,….I think you’re understanding it just fine from the standpoint of multiple observers, The point might be that in space, the density of “emptiness” or “lack of emptiness” might be impacted from one area of observation to another by an observer who’s perceptions are not equal but not being taken into consideration by each observer. ( an example if I may?) If you were to use a Clear medium which is oil based beginning with 5 gallons of mineral spirits in a large barrel and keep adding 5 gallons of thicker clear oil and then heavy grease and stop with using a clear heavy wax,…what happens is you end up with a barrel of clear fluid that begins with a floating substrate but the liquid begins to keep floating and the heaviest stuff goes to the bottom,…You end up with a sort of solid tube of clear fluids which if you could keep them in shape here on the earth, “you could observe them” from several positions, #1. the fluid end #2, the less fluid part, #3, the semi solid part #4. the seemingly solid part #5. the almost solid part & #6. the solid part……all of which would be transparent….You could then shine a laser through all of it and perhaps do that again from different places and see what happens at different angles…..I think what happens as a result would be, an observer would end up be influenced as per his or her ideas thusly because of the quasi-nature of what the density of space is at the point of space is where the observation is made. just a guess.

All Special Relativity really says about light is that it appears to move at the same rate from any observer POV. There are other more advanced rules relating to light speeds. One of them is the implication of infinite energy in a photon because of the fact it’s mass-less, therefore it can move at the maximum rate a mass-less particle or wave can (not necessarily that it does) Later when the electron was discovered (also mass-less particle or wave), it was also found to conform to the rules of special relativity.

As far as the big bang, there are a lot of cracks in that theory, and many different ones are beginning to dispute some of the common ideas behind the “Big Bang” as well as “Inflationary Cosmology”. Honestly though, both standard and quantum physics applied, and yet both went out the window at the same time at some point. That’s what all the theories really say. At some point, everything we know or think we know was bunk, because the math just breaks down, and doesn’t work right anymore.

i think until there is an understanding of the actual “fabric” of space itself, the wave vs particle confusion will continue. another interesting article recently was the half integer values of rotating light. planck’s constant was broken? gravity? a bump in the data? lol these are interesting times.

There’s no fabric.

Tesla insists there is an aether, Einstein says not. Tesla enjoyed far less trial and error than Einstein. The vast majority of Tesla’s projects worked the first time around and required no development or experimentation. I’ll go with Tesla; there is an aether as a fabric of space.

http://weinsteinsletter.weebly.com/aether.html

Maybe Special Relativity is not correct? 🙂

Feynman said unequivocally that QED is NOT a wave theory. In fact, the math only looks like Maxwell’s wave function when you are looking at a single particle at a time, but the analogy breaks down as soon as you start looking at the interactions of more than one, which is the real case. There’s no light acting alone, but always an interaction between a photon and some other particle, an electron, another photon, or whatever. He said “light is particles.” So the question re: how can light travel through a vacuum if it’s waves is a nonsensical question. There are no collapsing wave functions in light. There’s only probabilities of position that look like waves on a freaking piece of paper. Even calling light properties as “wavelengths” is nonsensical. Light comes in frequencies, i.e., the number of particles traveling tightly together. Higher frequency is more energy because it’s more particles (E=MC[squared]). “Wavicles” is pure bullshit.

I don’t agree with the John Wheeler theory that there is only one electron since the computer I am using was built by ion implantation and uses a very large number of them simultaneously to function.

Black holes don’t stop or slow light, if they even exist. A black hole could phase shift light, which is why we see things emitting xrays and call them black holes….but they could be something else too.

Photons have no mass but they do have energy. Energy and mass are transformable into each other. Gravity works on energy as well as mass. As massive particles approach the speed of light their measurable mass increases to infinity. But since energy is equivalent to mass, why doesn’t the photon, which has energy, not seem to have infinite mass?

NO other wave travels thru a vacuum? what about radio?

Radio waves are a specific frequency range of light.

Technically speaking, radio waves are emitted at various frequencies that share the same space time as light. They are not however light. They’re modulated electrons. Modulated photons certainly can be used to carry a vast amount of information a great distance. It cannot do it any faster or better than a radio wave though. Both electrons and photons are mass-less, therefore they both conform to the rules of Special Relativity in the same way. Both travel at the speed of light.

I just don’t understand is it a particle of a wave? It seems like it behaves like wave and sometimes like particle and in some situations is like a what ever you are going to call it.

So, the logical idea would to have formula Photon_influence * weight_for_particle + Wave_influence * weight_for_wave

Make it more compact.

This article is good but the title is bad as by the end we still weren’t told how light travels through space. Also, there are some historical mistakes as already pointed out. Now for my contribution: I think that light and Gravity have a lot in common; for one – an atom’s electrons transmit light and an atom contains the tiny heavy place that knows everything there is to know about gravity, that is, the nucleus. Light and Gravity are both related to the same entity, the atom. Unfortunately, we, still cannot grasp how what’s heavy brings about gravitation. For those of you with a creed for new ideas go to: https://www.academia.edu/10785615/Gravity_is_emergent It’s a hypothesis…

Gravity and light are infinite, like space and time… Mind the concept that there are waves within waves, motions within motion, vibrations within vibration, endless overtones and universal harmony…

From this article, I have “And in the end, the only thing that can truly slow down or arrest the speed of light is gravity”

Doesn’t light slow down in water and glass and other mediums. I was only a Physics minor, but I do remember coivering this though way back in the early 80’s. And in my quick checking online, I found the following.

“Light travels at approximately 300,000 kilometers per second in a vacuum, which has a refractive index of 1.0, but it slows down to 225,000 kilometers per second in water (refractive index = 1.3; see Figure 1) and 200,000 kilometers per second in glass (refractive index of 1.5).”

Were they saying something else here. I did like the article.

Photons are not massless, but their mass is incredibly small even compared to a proton or neutron. So, by Einstein’s E=MC^2, the energy required for a photon to move is greatly reduced, but photons do have mass and are affected by gravity. If photons had no mass at all, then gravity would have no affect on them, but gravity does. Gravity bends light and can change it’s course through space. We see that in the actual test first performed to prove Einstein’s theory buy observing the distorted placement of stars as their light passes near the sun observed during an eclipse. We can also see it through gravitational lensing when viewing deeps space objects. And the fact that there are black holes that are black because light cannot escape it’s gravity. So photons do have mass, be it miniscule, and with that their propagation with light waves through space will eventually run out of energy and stop. but this would probably require distances greater to several widths of our universe to accomplish. Light from the furthest reaches of the universe are not as bright, or as energetic, as they are at anyplace between here and their origins. That reduction in their energy is also attributed to Einstein’s equation and the inverse square law, where the intensity of light is in relation to the inverse square of the distance. That proves that light looses energy the further it travels, but it still moves at the speed of light. As light looses energy, it doesn’t slow the light wave.

It has been proven that more energetic light does in fact travel slightly faster. You can find the experiments done with light that has traveled billions of light years, the more energetic is in fact faster over a number of seconds, around 10 -15 or so. As people encounter this information, they see that many accepted theories can now be debunked.

The point of the article is nothing new; light acts like a particle AND a beam. So when you sit behind a closed door and someone shines a light on the door, the light will engulf the door and wave through and around the edges, the particle does not just bounce straight back. You can focus a beam of light on an object, but it will sneak though the corners and underneath the door, through any opening,. And yes, light travels forever. It is a constant, that cannot be sped up. We can slow it down by focusing it through prisims or crystals. But it still is traveling at 186,000/MPS.and that speed does not change. So, that is why we can see the outer edge of the universe: 13,8B light years away *the time that it takes for light to travel in one year, is one light year. So, it has taken 13,8B light years for the light of other galaxies to get here, so those galaxies could be gone by now, since it took so long to reach us, We are truly looking back in time as we see the light emitted from those galaxies and stars.

It propagates through the quantum mish-mash know as the aether . . .

If light is a particle and particles have mass why does not the mas increase with it speed?

Wow…there are errors in the article, yes…the enthusiasm demonstrated by all the comments is encouraging…but when I read these comments, I am a bit dismayed at the lack of understanding that is evident in most of them…confusing energy and intensity and wavelength…confusing rest mass and inertial mass…not to mention some off-the-wall hypotheses with no experimental evidence to support them. There are some great primers out there…books, documentaries, podcasts (like Astronomy Cast). Good luck!

Precisely correct. Sci-fi rules basic physics, which reflects on the poor education system. Pity.

First time I heard about A. A. and his theory about light I really didn’t like him. Why? Because light was the the fastest thing in the universe and there is no other thing faster than the light. Later, when I have red about angular speed I have asked my self if you have linear and angular speed and both of them are speeds how that will result in the maximum speed. Since then, I have not had a chance to get right answer.

Comments are closed.

Advertisement

How does a photon know to travel at the speed of light?

25 August 2021

an explosion of colored particles on a dark background, composition on the theme of science, molecular physics, space and a festive background

Pobytov/Getty Images

How does a photon “know” to travel at the speed of light?

Elaine Patrick Cyffylliog, Denbighshire, UK

I don’t know, ask Erwin Schrödinger. He was a relative of mine on my mother’s side. He told her mum, but she couldn’t understand it either. We’ve been in the dark ever since.

Yang Guijen Balik Pulau, Penang, Malaysia

The laws of the universe require that all the energy and matter particles occupying its space must abide by its rules – so as to maintain a viable home and playground for all. One of these rules is that if you are a massless particle of electromagnetic origin, and you want to play in vacuum space, then you must move at the speed of light, 299,792,458 metres per second, consistently.

If you are a particle with mass, however, then there are other rules that you can follow.

@kbachmann, via Twitter

Wouldn’t any speed travelled by photons be, by definition, the speed of light?

Ian Glendinning Vienna, Austria

All massless particles always travel at a speed represented by the letter c , whereas massive particles can travel at any speed between zero and c . Since photons are massless, they travel at c , which is called the speed of light because the photon was the first known example of a massless particle.

So the short answer to the question is that a photon knows to travel at the speed of light because it is massless.

Ken Appleby Ledbury, Herefordshire, UK

What we call photons are actually interactions of electromagnetic fields. Between interactions, photons don’t exist. You can’t watch a photon in transit, only detect an excitation of the electromagnetic field when it happens.

Photons don’t exist as particles. There are no particles, just interactions of quantum fields. Maxwell’s equations embody and explain in elegant mathematics the empirical results of Faraday’s experiments into electrostatic and magnetic fields – fields being a novel concept of Faraday’s invention. The equations reveal the existence of electromagnetic waves, which are always observed to travel at the constant speed c , regardless of the motion of emitter, receiver or observer. It was this apparent paradox that Einstein’s special relativity paper resolved, by dispensing with the notions of simultaneity, absolute space and time.

So at root, the answer to your question is just simply that that is reality. That is what we observe. The reasons are illuminated by the equations of electrodynamics, but ultimately it is an empirical observation. At least, so far.

James Bailey Southampton, Hampshire, UK

This question is the wrong way round. A photon is a packet of electromagnetic radiation. A very small part of the spectrum of that radiation (wavelengths of around 400 to 750 nanometres) is detectable with our eyes and we call this light. It is like asking why light takes 1/299,792,458 of a second to travel 1 metre, when in fact we just find it more convenient to define it as that, rather than use the old definition of a metre as a ten-millionth of the distance from the equator to the North Pole.

The really interesting question for me is why does electromagnetic radiation travel at 300,000 kilometres per second, and that brings us back to the question of time that has been raised before. Does light travel through time? If so, what exactly is it that it is travelling through? Or does time itself do the moving and is constantly sweeping past us like the wind while everything else stands still?

Does time actually exist as anything or is it just a convenient invention to allow us to talk about how things are moving?

To answer this question – or ask a new one – email [email protected] .

Questions should be scientific enquiries about everyday phenomena, and both questions and answers should be concise. We reserve the right to edit items for clarity and style. Please include a postal address, daytime telephone number and email address.

New Scientist Ltd retains total editorial control over the published content and reserves all rights to reuse question and answer material that has been submitted by readers in any medium or in any format.

Terms and conditions apply .

Sign up to our weekly newsletter

Receive a weekly dose of discovery in your inbox! We'll also keep you up to date with New Scientist events and special offers.

More from New Scientist

Explore the latest news, articles and features

Character_II_Bayanzag_1931_II kopi

Haunting photos bring fictional female explorers to life

BrainTwister #27: Dancing decimals

BrainTwister #27: Dancing decimals

Subscriber-only

A man is lying in a hammock in the sun, he is reading a book on his digital tablet. The hammock is hanging in a beautiful green forest in Sweden.

The best science non-fiction books of 2024 so far

RXCYW8 Air conditioner units on a roof of industrial building

Environment

Cool solutions could head off the climate-damaging rush for air con, popular articles.

Trending New Scientist articles

Turns out you can transmit sound in a vacuum, just not very far

For the first time, researchers were able to transmit, or "tunnel," sound waves across extremely small distances between two crystals in a vacuum.

Sound waves overlaid on an image of outer space

For the first time, scientists have shown that sound can travel through the emptiness of a vacuum. However, the rule-breaking trick requires specific circumstances and can only be carried out over extremely small distances.

The iconic tagline of the 1979 sci-fi film "Alien" tells us that "in space no one can hear you scream." This was based on the fact that space is a vacuum, a region devoid of any particles. Sound waves travel by vibrating through the particles of a medium, such as air or water, from a source to a receiver. So in a vacuum, there is no travel medium. (Outer space is not actually a total vacuum because it does contain small amounts of gas, plasma and other particles. But this matter is surrounded by vast swathes of emptiness.)

But in a new study, published July 14 in the journal Communications Physics , researchers showed that sound can move through a vacuum. Unfortunately for space explorers being hunted by aliens, this does not extend to human screams.

In the new experiment, researchers transmitted, or "tunneled," sound waves across a vacuum between two zinc oxide crystals by transforming the vibrating waves into ripples within an electric field between the objects.

Related: Eerie sounds triggered by plasma waves hitting Earth's magnetic field captured in new NASA sound clip

A multicolor concept image of sound travelling between two crystals

A zinc oxide crystal is a piezoelectric material, which means that when force or heat is applied to it, the material produces an electrical charge. Therefore, when sound is applied to one of these crystals, it creates an electrical charge that disrupts nearby electric fields. If the crystal shares an electric field with another crystal, then the magnetic disruption can travel from one to the other across a vacuum. The disruptions mirror the frequency of the sound waves, so the receiving crystal can turn the disruption back into a sound on the other side of the vacuum.

However, the disruptions cannot travel a distance greater than the wavelength of a single sound wave. In theory, this works with any sound no matter how small the wavelength of that sound is, as long as the gap between the crystals is small enough. 

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

The method is not always reliable. In a large percentage of the experiments, the sound was not perfectly transmitted between the two crystals: parts of the wave were warped, or reflected, as it passed through the electric field, the researchers found. However, occasionally the piezoelectric crystals perfectly transmitted the entire sound wave.

— Why is space a vacuum?

— What would happen to the human body in the vacuum of space?

— What if the speed of sound were as fast as the speed of light?  

"In most cases the effect [sound transmitted] is small, but we also found situations, where the full energy of the wave jumps across the vacuum with 100 % efficiency, without any reflections," study co-author Ilari Maasilta , a material physicist at the University of Jyväskylä in Finland, said in a statement .

The finding could one day help develop microelectromechanical components, like those found in smartphones and other technology, the researchers said. 

Harry is a U.K.-based senior staff writer at Live Science. He studied marine biology at the University of Exeter before training to become a journalist. He covers a wide range of topics including space exploration, planetary science, space weather, climate change, animal behavior, evolution and paleontology. His feature on the upcoming solar maximum was shortlisted in the "top scoop" category at the National Council for the Training of Journalists (NCTJ) Awards for Excellence in 2023. 

 alt=

'The beauty of symbolic equations is that it's much easier to … see a problem at a glance': How we moved from words and pictures to thinking symbolically

'Immortal' stars at the Milky Way's center may have found an endless energy source, study suggests

12,000-year-old Aboriginal sticks may be evidence of the oldest known culturally transmitted ritual in the world

Most Popular

  • 2 Self-healing 'living skin' can make robots more humanlike — and it looks just as creepy as you'd expect
  • 3 No, NASA hasn't warned of an impending asteroid strike in 2038. Here's what really happened.
  • 4 Milky Way's black hole 'exhaust vent' discovered in eerie X-ray observations
  • 5 NASA offers SpaceX $843 million to destroy the International Space Station
  • 2 Newly discovered asteroid larger than the Great Pyramid of Giza will zoom between Earth and the moon on Saturday
  • 3 2,000 years ago, a bridge in Switzerland collapsed on top of Celtic sacrifice victims, new study suggests
  • 4 Self-healing 'living skin' can make robots more humanlike — and it looks just as creepy as you'd expect
  • 5 What causes you to get a 'stitch in your side'?

travel through vacuum of space

expanding universe light waves

How Light Travels: The Reason Why Telescopes Can See the Invisible Parts of Our Universe

Due to how light travels, we can only see the most eye-popping details of space—like nebulas, supernovas, and black holes—with specialized telescopes.

  • Our eyes can see only a tiny fraction of these wavelengths , but our instruments enable us to learn far more.
  • Here, we outline how various telescopes detect different wavelengths of light from space.

Light travels only one way: in a straight line. But the path it takes from Point A to Point B is always a waveform, with higher-energy light traveling in shorter wavelengths. Photons , which are tiny parcels of energy, have been traveling across the universe since they first exploded from the Big Bang . They always travel through the vacuum of space at 186,400 miles per second—the speed of light—which is faster than anything else.

Too bad we can glimpse only about 0.0035 percent of the light in the universe with our naked eyes. Humans can perceive just a tiny sliver of the electromagnetic spectrum: wavelengths from about 380–750 nanometers. This is what we call the visible part of the electromagnetic spectrum. The universe may be lovely to look at in this band, but our vision skips right over vast ranges of wavelengths that are either shorter or longer than this limited range. On either side of the visible band lies evidence of interstellar gas clouds, the hottest stars in the universe, gas clouds between galaxies , the gas that rushes into black holes, and much more.

electromagnetic spectrum the visible range shaded portion is shown enlarged on the right

Fortunately, telescopes allow us to see what would otherwise remain hidden. To perceive gas clouds between stars and galaxies, we use detectors that can capture infrared wavelengths. Super-hot stars require instruments that see short, ultraviolet wavelengths. To see the gas clouds between galaxies, we need X-ray detectors.

We’ve been using telescopes designed to reveal the invisible parts of the cosmos for more than 60 years. Because Earth’s atmosphere absorbs most wavelengths of light, many of our telescopes must observe the cosmos from orbit or outer space.

Here’s a snapshot of how we use specialized detectors to explore how light travels across the universe.

Infrared Waves

galaxy glass z13 through webb

We can’t see infrared waves, but we can feel them as heat . A sensitive detector like the James Webb Space Telescope can discern this thermal energy from far across the universe. But we use infrared in more down-to-Earth ways as well. For example, remote-control devices work by sending infrared signals at about 940 nanometers to your television or stereo. These heat waves also emanate from incubators to help hatch a chick or keep a pet reptile warm. As a warm being, you radiate infrared waves too; a person using night vision goggles can see you, because the goggles turn infrared energy into false-color optical energy that your eyes can perceive. Infrared telescopes let us see outer space in a similar way.

Astronomers began the first sky surveys with infrared telescopes in the 1960s and 1970s. Webb , launched in 2021, takes advantage of the infrared spectrum to probe the deepest regions of the universe. Orbiting the sun at a truly cold expanse—about one million miles from Earth—Webb has three infrared detectors with the ability to peer farther back in time than any other telescope has so far.

Its primary imaging device, the Near Infrared Camera (NIRCam), observes the universe through detectors tuned to incoming wavelengths ranging from 0.6 to 5 microns, ideal for seeing light from the universe’s earliest stars and galaxies. Webb’s Mid-Infrared Instrument (MIRI) covers the wavelength range from 5 to 28 microns, its sensitive detectors collecting the redshifted light of distant galaxies. Conveniently for us, infrared passes more cleanly through deep space gas and dust clouds, revealing the objects behind them; for this and many other reasons, the infrared spectrum has gained a crucial foothold in our cosmic investigations. Earth-orbiting satellites like NASA’s Wide Field Infrared Survey Telescope ( WFIRST ) observe deep space via longer infrared wavelengths, too.

Yet, when stars first form, they mostly issue ultraviolet light . So why don’t we use ultraviolet detectors to find distant galaxies? It’s because the universe has been stretching since its beginning, and the light that travels through it has been stretching, too; every planet, star, and galaxy continually moves away from everything else. By the time light from GLASS-z13—formed 300 million years after the Big Bang—reaches our telescopes, it has been traveling for more than 13 billion years , a vast distance all the way from a younger universe. The light may have started as ultraviolet waves, but over vast scales of time and space, it ended up as infrared. So, this fledgling galaxy appears as a red dot to NIRCam. We are gazing back in time at a galaxy that is rushing away from us.

Radio Waves

m87 supermassive black hole in polarised light

If we could see the night sky only through radio waves, we would notice swaths of supernovae , pulsars, quasars, and gassy star-forming regions instead of the usual pinprick fairy lights of stars and planets.

Tools like the Arecibo Observatory in Puerto Rico can do the job our eyes can’t: detect some of the longest electromagnetic waves in the universe. Radio waves are typically the length of a football field, but they can be even longer than our planet’s diameter. Though the 1,000-foot-wide dish at Arecibo collapsed in 2020 due to structural problems, other large telescopes carry on the work of looking at radio waves from space. Large radio telescopes are special because they actually employ many smaller dishes, integrating their data to produce a really sharp image.

Unlike optical astronomy, ground-based radio telescopes don’t need to contend with clouds and rain. They can make out the composition, structure, and motion of planets and stars no matter the weather. However, the dishes of radio telescopes need to be much larger than optical ones to generate a comparable image, since radio waves are so long. The Parkes Observatory’s dish is 64 meters wide, but its imaging is comparable to a small backyard optical telescope, according to NASA .

Eight different radio telescopes all over the world coordinated their observations for the Event Horizon Telescope in 2019 to put together the eye-opening image of a black hole in the heart of the M87 galaxy (above).

Ultraviolet Waves

sun in ultraviolet nasa image

You may be most familiar with ultraviolet, or UV rays, in warnings to use sunscreen . The sun is our greatest local emitter of these higher-frequency, shorter wavelengths just beyond the human visible spectrum, ranging from 100 to 400 nanometers. The Hubble Space Telescope has been our main instrument for observing UV light from space, including young stars forming in Spiral Galaxy NGC 3627, the auroras of Jupiter, and a giant cloud of hydrogen evaporating from an exoplanet that is reacting to its star’s extreme radiation.

Our sun and other stars emit a full range of UV light, telling astronomers how relatively hot or cool they are according to the subdivisions of ultraviolet radiation: near ultraviolet, middle ultraviolet, far ultraviolet, and extreme ultraviolet. Applying a false-color visible light composite lets us see with our own eyes the differences in a star’s gas temperatures.

Hubble’s Wide Field Camera 3 (WFC3) breaks down ultraviolet light into specific present colors with filters. “Science visuals developers assign primary colors and reconstruct the data into a picture our eyes can clearly identify,” according to the Hubble website . Using image-processing software, astronomers and even amateur enthusiasts can turn the UV data into images that are not only beautiful, but also informative.

X-Ray Light

chandra xray telescope image of two galaxies colliding and forming a gas bridge between them

Since 1999, the orbiting Chandra X-Ray Observatory is the most sensitive radio telescope ever built. During one observation that lasted a few hours, its X-ray vision saw only four photons from a galaxy 240 million light-years away, but it was enough to ascertain a novel type of exploding star . The observatory, located 86,500 miles above Earth, can produce detailed, full-color images of hot X-ray-emitting objects, like supernovas, clusters of galaxies and gases, and jets of energy surrounding black holes that are millions of degrees Celsius. It can also measure the intensity of an individual X-ray wavelength, which ranges from just 0.01 to 10 nanometers. Its four sensitive mirrors pick up energetic photons and then electronic detectors at the end of a 30-foot optical apparatus focus the beams of X-rays.

Closer to home, the Aurora Borealis at the poles emits X-rays too. And down on Earth, this high-frequency, low-wavelength light passes easily through the soft tissue of our bodies, but not our bones, yielding stellar X-ray images of our skeletons and teeth.

Visible Light

visible light image of mystic mountain, a pillar of gas dust and newborn stars in the carina nebula taken by the hubble telescope

Visible color gives astronomers essential clues to a whole world of information about a star, including temperature, distance, mass, and chemical composition. The Hubble Telescope, perched 340 miles above our planet, has been a major source of visible light images of the cosmos since 1990.

Hotter objects, like young stars, radiate energy at shorter wavelengths of light; that’s why younger stars at temperatures up to 12,000 degrees Celsius, like the star Rigel, look blue to us. Astronomers can also tell the mass of a star from its color. Because mass corresponds to temperature, observers know that hot blue stars are at least three times the mass of the sun. For instance, the extremely hot, luminous blue variable star Eta Carina’s bulk is 150 times the mass of our sun, and it radiates 1,000,000 times our sun’s energy.

Our comparatively older, dimmer sun is about 5,500 degrees Celsius, so it appears yellow. At the other end of the scale, the old star Betelgeuse has been blowing off its outer layer for the past few years, and it looks red because it’s only about 3,000 degrees Celsius.

A View of Earth

space telescopes and what lightwave ranges they detect

Scientists use different wavelengths of light to study phenomena closer to home, too.

Detectors in orbit can distinguish between geophysical and environmental features on Earth’s changing surface, such as volcanic action. For example, infrared light used alongside visible light detection reveals areas covered in snow, volcanic ash, and vegetation. The Moderate Resolution Imaging Spectroradiometer ( MODIS ) infrared instrument onboard the Aqua and Terra satellites monitors forest fire smoke and locates the source of a fire so humans don’t have to fly through smoke to evaluate the situation.

Next year, a satellite will be launched to gauge forest biomass using a special radar wavelength of about 70 centimeters that can penetrate the leafy canopy.

💡 Why is the sky blue? During the day, oxygen and nitrogen in Earth’s atmosphere scatters electromagnetic energy at the wavelengths of blue light (450–485 nanometers). At sunset, the sun’s light makes a longer journey through the atmosphere before greeting your eyes. Along the way, more of the sun’s light is scattered out of the blue spectrum and deeper into yellow and red.

Headshot of Manasee Wagh

Before joining Popular Mechanics , Manasee Wagh worked as a newspaper reporter, a science journalist, a tech writer, and a computer engineer. She’s always looking for ways to combine the three greatest joys in her life: science, travel, and food.

preview for Popular Mechanics All Sections

.css-cuqpxl:before{padding-right:0.3125rem;content:'//';display:inline;} Pop Mech Pro: Science .css-xtujxj:before{padding-left:0.3125rem;content:'//';display:inline;}

blood transfusion bag

Human Consciousness Is an Illusion, Scientists Say

cyber eye

The CIA’s Plan to Deploy an Army of Super Spies

coffin on stage with red flowers on top and dramatic red curtains in the background

She Was Pronounced Dead—Then Found Gasping for Air

polygonal brain shape with glowing lines and dots

Every Single Cell in Your Body Could Be Conscious

life extension

How to Live Forever, or Die Trying

abstract light in a tunnel

A Groundbreaking Discovery For Interstellar Travel

futuristic lab equipment in a pool of water

Dark Matter Could Unlock a Limitless Energy Source

nebula with womans face

The Source of All Consciousness May Be Black Holes

a frozen human brain inside a spinning ice cube 3d illustration

Could Freezing Your Brain Help You Live Forever?

multicolored painted nebula

The Universe Could Be Eternal, This Theory Says

human hands stretched out to the burning sun, ethereal and unreal concepts of universe, spiritual and natural powers otherwise, fires burning down the past life, natural disaster, climate change and global warming, inferno, hell and chaos ultimate conceptual shot

Immortality Is Impossible Until We Beat Physics

Astronomy Magazine logo

  • Login/Register
  • Solar System
  • Exotic Objects
  • Upcoming Events
  • Deep-Sky Objects
  • Observing Basics
  • Telescopes and Equipment
  • Astrophotography
  • Space Exploration
  • Human Spaceflight
  • Robotic Spaceflight
  • The Magazine

Is there any sound in space? An astronomer explains

Matter in deep space is spread out, which makes it impossible for any sound waves to travel. Credit: NASA

How far can sound travel through space, since it’s so empty? Is there an echo in space? – Jasmine, age 14, Everson, Washington

In space, no one can hear you scream.

You may have heard this saying. It’s the tagline from the famous 1979 science fiction movie “ Alien .” It’s a scary thought, but is it true? The simple answer is yes, no one can hear you scream in space because there is no sound or echo in space.

I’m a  professor of astronomy , which means I study space and how it works. Space is silent – for the most part.

How sound works

To understand why there’s no sound in space, first consider how sound works.  Sound is a wave  of energy that moves through a solid, a liquid or a gas.

Sound is  a compression wave . The energy created when your vocal cords vibrate slightly compresses the air in your throat, and the compressed energy travels outward.

A good analogy for sound is a  Slinky toy . If you stretch out a Slinky and push hard on one end, a  compression wave travels  down the Slinky.

When you talk, your vocal cords vibrate. They jostle air molecules in your throat above your vocal cords, which in turn jostle or bump into their neighbors, causing a sound to come out of your mouth.

Sound moves through air the same way it moves through your throat. Air molecules near your mouth bump into their neighbors, which in turn bump into their neighbors, and the sound moves through the air. The  sound wave travels quickly , about 760 miles per hour (1,223 kilometers per hour), which is faster than a commercial jet.

Space is a vacuum

So what about in space?

Space is a vacuum, which means it contains almost no matter. The word vacuum  comes from the Latin word for empty .

Sound is carried by atoms and molecules. In space, with no atoms or molecules to carry a sound wave, there’s no sound. There’s nothing to get in sound’s way out in space, but there’s nothing to carry it, so it doesn’t travel at all. No sound also means no echo.  An echo  happens when a sound wave hits a hard, flat surface and bounces back in the direction it came from.

By the way, if you were caught in space outside your spacecraft with no spacesuit, the fact that no one could hear your cry for help is the least of your problems. Any air you still had in your lungs would expand because it was at higher pressure than the vacuum outside. Your lungs would rupture. In a mere  10 to 15 seconds , you’d be unconscious due to a lack of oxygen.

Sound in the solar system

Scientists have wondered how human voices would sound on our nearest neighboring planets, Venus and Mars. This experiment is hypothetical because  Mars is usually below freezing , and its atmosphere is  thin, unbreathable carbon dioxide .  Venus is even worse  – its air is hot enough to melt lead, with a thick carbon dioxide atmosphere.

On Mars, your voice would sound tinny and hollow, like the  sound of a piccolo .  On Venus , the pitch of your voice would be much deeper, like the sound of a booming bass guitar. The reason is the thickness of the atmosphere. On Mars the thin air creates a high-pitched sound, and on Venus the thick air creates a low-pitched sound. The team that worked this out  simulated other solar system sounds , like a waterfall on Saturn’s moon Titan.

Deep space sounds

While space is a good enough vacuum that normal sound can’t travel through it, it’s actually not a perfect vacuum, and it does have some particles floating through it.

Beyond the Earth  and its atmosphere, there are five particles in a typical cubic centimeter – the volume of a sugar cube – that are mostly hydrogen atoms. By contrast, the air you are breathing is 10 billion billion (10 19)  times more dense. The density goes down with distance from the Sun, and in  the space between stars  there are 0.1 particles per cubic centimeter. In vast  voids between galaxies , it is a million times lower still – fantastically empty.

The voids of space are kept very hot by radiation from stars. The very spread-out matter found there is in a physical state  called a plasma .

A plasma is a gas in which electrons are separated from protons. In a plasma, the  physics of sound waves get complicated . Waves travel much faster in this low-density medium, and their wavelength is much longer.

In 2022, NASA released a  spectacular example of sound in space . It used X-ray data to make an audible recording that represents the way a massive black hole stirs up plasma in the Perseus galaxy cluster, 250 million light years from Earth. The black hole itself emits no sound, but the diffuse plasma around it carries very long wavelength sound waves.

The natural sound is far too low a frequency for the human ear to hear, 57 octaves below middle C, which is the middle note on a piano and in the middle of the range of sound people can hear. But after raising the frequency to the audible range, the result is chilling – it’s the sound of a black hole growling in deep space.

This article was first published on The Conversation .

travel through vacuum of space

What are the chances of dark matter or a black hole ripping apart Earth?

The Moon rises over mountains in Utah. Credit: NASA/Bill Dunford.

Why does the Moon look so large sometimes as it rises on the horizon?

Curation teams process the sample return capsule from NASA’s OSIRIS-REx mission in a cleanroom in 2023. Credit: NASA.

Asteroid Bennu sample shows more signs of a watery past

travel through vacuum of space

Scientists want to study the heliosphere- here’s how they might do it

The Full Moon glows in the sky over Melbourne, Florida, in July 2016.

2024 Full Moon calendar: When to see the Full Moon and phases

travel through vacuum of space

Greenhouse gases could indicate alien life — if we ever find them

The bright skyglow from city lights can easily wash away the night sky, hiding the stars from view. But they are still there, shining — and we can reveal them with collaborations and initiatives underway around the world.

The fight against light pollution

There are more than 40 holes on Mars. The drill aboard the Curiosity rover created the hole in a rock investigators call Mammoth Lakes. The bright spot to the left of the hole is where the rover smoothed a small area to collect spectroscopic data. Credit: NASA/JPL-Caltech/MSSS

What’s in this most recent hole NASA drilled on Mars? We might know soon

NGC 4449

Gemini North celebrates its 25th birthday with a glorious photo of NGC 4449

Home

Ask an Explainer

How does sound travel through space.

Sound can't be carried in the empty vacuum of space because sound waves need a medium to vibrate through such as air or water. Until recently, we thought that since there is no air in space, that no sound could travel and that is still true but only up to a point. Space isn’t actually completely empty, there are large areas of gas and dust that do have the potential to carry sound waves . However, because the particles are so spread out, the sounds waves they produce are at such a low frequency, humans are incapable of hearing them. 

Ask an Explainer

share this!

May 20, 2016

How does light travel?

by Matt Williams, Universe Today

How does light travel?

Ever since Democritus – a Greek philosopher who lived between the 5th and 4th century's BCE – argued that all of existence was made up of tiny indivisible atoms, scientists have been speculating as to the true nature of light. Whereas scientists ventured back and forth between the notion that light was a particle or a wave until the modern, the 20th century led to breakthroughs that showed that it behaves as both.

These included the discovery of the electron, the development of quantum theory, and Einstein's Theory of Relativity. However, there remains many fascinating and unanswered questions when it comes to light, many of which arise from its dual nature. For instance, how is it that light can be apparently without mass, but still behave as a particle? And how can it behave like a wave and pass through a vacuum, when all other waves require a medium to propagate?

Theory of Light in the 19th Century:

During the Scientific Revolution, scientists began moving away from Aristotelian scientific theories that had been seen as accepted canon for centuries. This included rejecting Aristotle's theory of light, which viewed it as being a disturbance in the air (one of his four "elements" that composed matter), and embracing the more mechanistic view that light was composed of indivisible atoms.

In many ways, this theory had been previewed by atomists of Classical Antiquity – such as Democritus and Lucretius – both of whom viewed light as a unit of matter given off by the sun. By the 17th century, several scientists emerged who accepted this view, stating that light was made up of discrete particles (or "corpuscles"). This included Pierre Gassendi, a contemporary of René Descartes, Thomas Hobbes, Robert Boyle, and most famously, Sir Isaac Newton.

Newton's corpuscular theory was an elaboration of his view of reality as an interaction of material points through forces. This theory would remain the accepted scientific view for more than 100 years, the principles of which were explained in his 1704 treatise "Opticks, or, a Treatise of the Reflections, Refractions, Inflections, and Colours of Light". According to Newton, the principles of light could be summed as follows:

  • Every source of light emits large numbers of tiny particles known as corpuscles in a medium surrounding the source.
  • These corpuscles are perfectly elastic, rigid, and weightless.

This represented a challenge to "wave theory", which had been advocated by 17th century Dutch astronomer Christiaan Huygens. . These theories were first communicated in 1678 to the Paris Academy of Sciences and were published in 1690 in his "Traité de la lumière" ("Treatise on Light"). In it, he argued a revised version of Descartes views, in which the speed of light is infinite and propagated by means of spherical waves emitted along the wave front.

Double-Slit Experiment:

By the early 19th century, scientists began to break with corpuscular theory. This was due in part to the fact that corpuscular theory failed to adequately explain the diffraction, interference and polarization of light, but was also because of various experiments that seemed to confirm the still-competing view that light behaved as a wave.

The most famous of these was arguably the Double-Slit Experiment, which was originally conducted by English polymath Thomas Young in 1801 (though Sir Isaac Newton is believed to have conducted something similar in his own time). In Young's version of the experiment, he used a slip of paper with slits cut into it, and then pointed a light source at them to measure how light passed through it.

According to classical (i.e. Newtonian) particle theory, the results of the experiment should have corresponded to the slits, the impacts on the screen appearing in two vertical lines. Instead, the results showed that the coherent beams of light were interfering, creating a pattern of bright and dark bands on the screen. This contradicted classical particle theory, in which particles do not interfere with each other, but merely collide.

The only possible explanation for this pattern of interference was that the light beams were in fact behaving as waves. Thus, this experiment dispelled the notion that light consisted of corpuscles and played a vital part in the acceptance of the wave theory of light. However subsequent research, involving the discovery of the electron and electromagnetic radiation , would lead to scientists considering yet again that light behaved as a particle too, thus giving rise to wave-particle duality theory.

Electromagnetism and Special Relativity:

Prior to the 19th and 20th centuries, the speed of light had already been determined. The first recorded measurements were performed by Danish astronomer Ole Rømer, who demonstrated in 1676 using light measurements from Jupiter's moon Io to show that light travels at a finite speed (rather than instantaneously).

By the late 19th century , James Clerk Maxwell proposed that light was an electromagnetic wave, and devised several equations (known as Maxwell's equations) to describe how electric and magnetic fields are generated and altered by each other and by charges and currents. By conducting measurements of different types of radiation (magnetic fields, ultraviolet and infrared radiation), he was able to calculate the speed of light in a vacuum (represented as c).

In 1905, Albert Einstein published "On the Electrodynamics of Moving Bodies", in which he advanced one of his most famous theories and overturned centuries of accepted notions and orthodoxies. In his paper, he postulated that the speed of light was the same in all inertial reference frames, regardless of the motion of the light source or the position of the observer.

Exploring the consequences of this theory is what led him to propose his theory of Special Relativity, which reconciled Maxwell's equations for electricity and magnetism with the laws of mechanics, simplified the mathematical calculations, and accorded with the directly observed speed of light and accounted for the observed aberrations. It also demonstrated that the speed of light had relevance outside the context of light and electromagnetism.

For one, it introduced the idea that major changes occur when things move close the speed of light, including the time-space frame of a moving body appearing to slow down and contract in the direction of motion when measured in the frame of the observer. After centuries of increasingly precise measurements, the speed of light was determined to be 299,792,458 m/s in 1975.

How does light travel?

Einstein and the Photon:

In 1905, Einstein also helped to resolve a great deal of confusion surrounding the behavior of electromagnetic radiation when he proposed that electrons are emitted from atoms when they absorb energy from light. Known as the photoelectric effect, Einstein based his idea on Planck's earlier work with "black bodies" – materials that absorb electromagnetic energy instead of reflecting it (i.e. white bodies).

At the time, Einstein's photoelectric effect was attempt to explain the "black body problem", in which a black body emits electromagnetic radiation due to the object's heat. This was a persistent problem in the world of physics, arising from the discovery of the electron, which had only happened eight years previous (thanks to British physicists led by J.J. Thompson and experiments using cathode ray tubes).

At the time, scientists still believed that electromagnetic energy behaved as a wave, and were therefore hoping to be able to explain it in terms of classical physics. Einstein's explanation represented a break with this, asserting that electromagnetic radiation behaved in ways that were consistent with a particle – a quantized form of light which he named "photons". For this discovery, Einstein was awarded the Nobel Prize in 1921.

Wave-Particle Duality:

Subsequent theories on the behavior of light would further refine this idea, which included French physicist Louis-Victor de Broglie calculating the wavelength at which light functioned. This was followed by Heisenberg's "uncertainty principle" (which stated that measuring the position of a photon accurately would disturb measurements of it momentum and vice versa), and Schrödinger's paradox that claimed that all particles have a " wave function ".

In accordance with quantum mechanical explanation, Schrodinger proposed that all the information about a particle (in this case, a photon) is encoded in its wave function, a complex-valued function roughly analogous to the amplitude of a wave at each point in space. At some location, the measurement of the wave function will randomly "collapse", or rather "decohere", to a sharply peaked function. This was illustrated in Schrödinger famous paradox involving a closed box, a cat, and a vial of poison (known as the "Schrödinger's Cat" paradox).

According to his theory, wave function also evolves according to a differential equation (aka. the Schrödinger equation). For particles with mass, this equation has solutions; but for particles with no mass, no solution existed. Further experiments involving the Double-Slit Experiment confirmed the dual nature of photons. where measuring devices were incorporated to observe the photons as they passed through the slits.

When this was done, the photons appeared in the form of particles and their impacts on the screen corresponded to the slits – tiny particle-sized spots distributed in straight vertical lines. By placing an observation device in place, the wave function of the photons collapsed and the light behaved as classical particles once more. As predicted by Schrödinger, this could only be resolved by claiming that light has a wave function, and that observing it causes the range of behavioral possibilities to collapse to the point where its behavior becomes predictable.

The development of Quantum Field Theory (QFT) was devised in the following decades to resolve much of the ambiguity around wave-particle duality. And in time, this theory was shown to apply to other particles and fundamental forces of interaction (such as weak and strong nuclear forces). Today, photons are part of the Standard Model of particle physics, where they are classified as boson – a class of subatomic particles that are force carriers and have no mass.

So how does light travel? Basically, traveling at incredible speeds (299 792 458 m/s) and at different wavelengths, depending on its energy. It also behaves as both a wave and a particle, able to propagate through mediums (like air and water) as well as space. It has no mass, but can still be absorbed, reflected, or refracted if it comes in contact with a medium. And in the end, the only thing that can truly slow down or arrest the speed of light is gravity (i.e. a black hole).

What we have learned about light and electromagnetism has been intrinsic to the revolution which took place in physics in the early 20th century, a revolution that we have been grappling with ever since. Thanks to the efforts of scientists like Maxwell, Planck, Einstein, Heisenberg and Schrodinger, we have learned much, but still have much to learn.

For instance, its interaction with gravity (along with weak and strong nuclear forces) remains a mystery. Unlocking this, and thus discovering a Theory of Everything (ToE) is something astronomers and physicists look forward to. Someday, we just might have it all figured out!

Source: Universe Today

Explore further

Feedback to editors

travel through vacuum of space

Searching for dark matter with the coldest quantum detectors in the world

2 hours ago

travel through vacuum of space

Compact cities found to have lower carbon emissions but poorer air quality, less green space and higher mortality rates

8 hours ago

travel through vacuum of space

New theory reveals fracture mechanism in soft materials

10 hours ago

travel through vacuum of space

Researchers uncover key mechanisms in chromosome structure development

travel through vacuum of space

Energy landscape theory sheds light on evolution of foldable proteins

travel through vacuum of space

Researchers discover photo-induced charge-transfer complex between amine and imide

12 hours ago

travel through vacuum of space

Why do you keep your house so cold? Study suggests childhood home temperature can predict adult thermostat settings

13 hours ago

travel through vacuum of space

Cryptocurrency investors are more likely to self-report 'Dark Tetrad' personality traits, study shows

travel through vacuum of space

New study challenges drought theory for Cahokia exodus

travel through vacuum of space

World's oldest artwork discovered in Indonesian cave

14 hours ago

Relevant PhysicsForums posts

Increasing tone while mixing sugar in water.

16 hours ago

Does the use of microwave communication heat water particles?

20 hours ago

Stable solutions to simplified 2 and 3 body problems?

Jul 2, 2024

List of Verdet Constants?

Jun 26, 2024

What will be the reading of this vernier calliper?

Magnetic fields in a vacuum.

Jun 24, 2024

More from Other Physics Topics

Related Stories

travel through vacuum of space

Experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection

May 12, 2016

The 'great smoky dragon' of quantum physics

Mar 10, 2016

travel through vacuum of space

The first ever photograph of light as both a particle and wave

Mar 2, 2015

'One real mystery of quantum mechanics': Physicists devise new experiment

Nov 1, 2012

travel through vacuum of space

Quantum physics inside a drop of paint

travel through vacuum of space

Will we have to rewrite Einstein's theory of general relativity?

Nov 25, 2015

Recommended for you

travel through vacuum of space

Physicists explore how fluctuations shape transport networks

15 hours ago

travel through vacuum of space

Scientists create world's most amazingly difficult maze with future potential to boost carbon capture

travel through vacuum of space

Moving beyond the 80-year-old solar cell equation

travel through vacuum of space

CERN's ATLAS experiment releases 65 TB of open data for research

Jul 1, 2024

travel through vacuum of space

World's most accurate and precise atomic clock pushes new frontiers in physics

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

travel through vacuum of space

A Quiet Place: 7 Questions I Have About The Aliens After Day One

T he Quiet Place movies are not what one would call exposition friendly films. Because characters have to stay almost entirely silent lest they be attacked and mauled to death, there aren’t exactly a lot of opportunities in the stories for people to sit down together and explain everything they know about what’s going on in the world and what’s happening on the planet. This is a relief in some ways, as too many films tend to overburden audiences with explanations, but it also means that we are now three features into the series and still know exceptionally little about the principal antagonists of the canon. It’s been revealed they are sensitive to high frequency sound and don’t function well in water, but that’s about it.

With the newly released A Quiet Place: Day One being a prequel, there was some hope that the franchise would shed some light about the big alien invasion that led to a worldwide reduction in volume… but it didn’t exactly deliver on that front. Instead, I still find myself asking seven key questions about the otherworldly creatures from the popular horror series and wondering if future installments may hold the answers.

What Are We Supposed To Call The Aliens?

This one is pretty basic, and I’m actually shocked we don’t have an answer for it yet. From xenomorphs and facehuggers in the Alien franchise to the various species in Star Wars and Star Trek , creating an identifiable name for a new race of extraterrestrial fiends is Pop Culture 101 stuff… and yet, after three movies, there is still no widely accepted name for the otherworldly monsters in the Quiet Place franchise . There is no instance in any of the three movies where characters try to identify them as a group, and nothing has specifically stuck among audience. This would be a nice thing for the series to fix in the next installment, if not just to aide fan conversation.

Do The Aliens Have A Ship In Orbit?

At this point in the Quiet Place franchise, I have zero expectations of learning about the home world of the aliens, as that would be material difficult to tackle in the kinds of stories that are being told. That being said, I do have queries about how the creatures actually got to Earth. In both A Quiet Place: Day One and the prologue in A Quiet Place Part II , we see the aliens fall to the sky like a global meteor storm, but did they fly in from a ship? Is there some kind of massive interstellar vehicle parked above the Earth’s atmosphere that they deployed from?

If The Aliens Don’t Have A Ship, How Did They Travel Through The Vacuum Of Space?

I actually hope that there is an alien ship out in orbit in the Quiet Place films, as a lack of one opens up multiple more questions. For example: how did they survive flying around in the vacuum of space? Clearly they have an adaptable biology working in their favor, as they are seemingly able to do quite well living in Earth’s atmosphere, but if we’re honing even a little close to reality (and yes, I realize this is science-fiction), it doesn’t make any sense that the monsters could fly around without any kind of protective equipment or special resources.

If The Aliens Can’t See, How Did They Find Earth?

Here is another issue that crops up if the aliens don’t have a ship: how did they find Earth and initiate a coordinated attack? Even if they can somehow survive in the vacuum of space and propel themselves through it, the standout thing we know about them is that they can’t see but have hyper-sensitive hearing. There is no sound in space, so how could they find our planet without the ability to perceive light?

How Did The Aliens End Up In Space?

For the sake of argument, let’s say that the aliens can naturally exist in space and also have special planet-hunting senses that allow them to seek out worlds without sight. But how did they get into space to begin with? The fact that they crash land like meteors suggests that they don’t have some kind of propulsion system built into their carapaces, and they don’t fly; they crawl and climb. So how did they actually leave their home world and get to Earth?

Are The Aliens Sentient?

Are the aliens in the Quiet Place franchise intelligent? That seems like kind of a weird question to ask about an antagonist three movies into a series, but it’s a question that doesn’t presently have an answer. Executing a coordinated attack on Earth suggests that the creatures do have some kind of intelligence, but they otherwise seem pretty mindless – instinctively going after any sound they hear and instantly going into attack mode. They don’t seem to communicate with one another, but we can’t take extraterrestrial telepathy off the table. We also can’t totally rule out the idea that the creatures are merely weapons of another more intelligent species that is hanging out in orbit until all of humanity is wiped out.

Why Are The Aliens Actually On Earth?

There is no questioning that the aliens in the Quiet Place movies pose an extreme, extinction-level threat to Earth… but we don’t really know why any of it is happening. Are they hunting humans as food? (Because these are PG-13 movies, we don’t actually see what the aliens are doing to the people they attack). Are they getting all life out of the way so that they can start mining for some kind of special resource the planet has? Are they empire-builders setting up a new base of operations in an intergalactic war? Not knowing the answer is arguably scarier – and this is a horror franchise, after all – but I have to admit to my own curiosity.

A Quiet Place: Day One is now playing in theaters, having just had a terrific opening weekend at the box office. It’s pretty hard to believe that this will be the last installment of the series, so stay tuned here on CinemaBlend for news about more projects from this franchise (projects that will perhaps find ways to answer one or more questions posed above). To learn about all of the other scary films that are on their way to theaters in the coming weeks and months, check out our Upcoming Horror Movies guide.

 A Quiet Place: 7 Questions I Have About The Aliens After Day One

  • Celebrities
  • Science & Tech
  • Fashion & Beauty
  • Food & Drink
  • Home & Garden
  • Sports & Fitness
  • Travel & Outdoors
  • Science & tech
  • Conversations

New study finds evidence of possible alien travel through space 'warp drives'

New study finds evidence of possible alien travel through space 'warp drives'

A new study has found a theory that 'warp drives' could be possible - this method of fast space travel will be known to many sci-fi and Star Trek fans.

These super powered space engines can manipulate space time as it compresses what's in front of it and expands it behind.

It creates what's called a 'warp bubble' which is how these spacecrafts in the sci-fi world can travel so quickly, some faster than the speed of light.

This has been looked into because scientists have hinted 'warp drives' may well have been used by aliens as they have left trails through space.

A previous study published in 1994 suggested this could be possible with a substance that may or may not exist but a new study suggests a way to do it without this.

Lead author Jared Fuchs, of the University of Alabama, Huntsville and the research think tank Applied Physics, said: "This study changes the conversation about 'warp drives'. By demonstrating a first-of-its-kind model, we've shown that 'warp drives' might not be relegated to science fiction."

According to a statement, the new model uses "a sophisticated blend of traditional and novel gravitational techniques to create a 'warp bubble' that can transport objects at high speeds within the bounds of known physics".

However the proposal says travel faster than the speed of light could not be achieved.

Fuchs and his research team admit this is a single study and even if others could prove the maths behind it, actually building a 'warp drive' is a long, long way off.

"While we're not yet preparing for interstellar voyages, this research heralds a new era of possibilities," Gianni Martire, CEO of Applied Physics, said in the same statement.

"We're continuing to make steady progress as humanity embarks on the Warp Age."

Sign up for our free indy100 weekly newsletter

How to join the indy100's free WhatsApp channel

Have your say in our news democracy. Click the upvote icon at the top of the page to help raise this article through the indy100 rankings

General election live: Sunak fails to make headway as polling looms

Remains of '10-foot-tall people' discovered in nevada cave, groundbreaking experiment reveals why some people never get covid, why is the asteroid 16 psyche worth $10,000,000,000,000,000,000, strange rocks under the pacific hint at how life on earth really began, we took taylor swift fans to review her favourite london kebab shop, was the legendary lost continent of mu the 'real' atlantis, wetherspoons clears up 'red plate' theories, sir michael eavis ‘better than ever’ at 88, says daughter after glastonbury set, 13 of the funniest memes as the uk experiences a heatwave, why has the trump camp hit out at cnn's jake tapper, man cremates ‘wife’ only to find her alive nearly 400 miles away, 50 cent once sued taco bell for $4m over joke that backfired, ancient chinese city found perfectly preserved at the bottom of a lake.

IMAGES

  1. Why is space a vacuum?

    travel through vacuum of space

  2. Exploring the Vacuum of Space: An In-depth Guide

    travel through vacuum of space

  3. "vacuum " what is it?

    travel through vacuum of space

  4. Understanding vacuum fluctuations in space

    travel through vacuum of space

  5. Exploring Which Waves Can Travel Through a Vacuum

    travel through vacuum of space

  6. How Rockets Are Able To Accelerate In The Vacuum Of Space

    travel through vacuum of space

VIDEO

  1. Why Sound cannot Travel through Vacuum?🤔 w/ Neil deGrasse Tyson #sound #physics #neil #science

  2. Walking on the moon at 30,000 feet! Space.com trains like an astronaut in wild ride

  3. “The Vacuum Of Space”

  4. A Glimmering Abyss: The Nature of the Space Vacuum

  5. The Effects of Exposing Your Body to the Vacuum of Space

  6. Destroy Our Vacuum Chamber Using Explosion #bluebox

COMMENTS

  1. visible light

    0. Since, electro magnetic waves have electric and magnetic vector. Due to this EM waves show electric and magnetic field. An electric and magnetic field have no need a medium to show thier effect. Hence in the presence of electric and magnetic field vector which vibrate perpendeculer to each other and get pertervation EM waves travels in vacuum.

  2. How Does Light Travel Through Space? Facts & FAQ

    Facts & FAQ. Light is such a fundamental part of our lives. From the moment we're born, we are showered with all kinds of electromagnetic radiation, both colorful, and invisible. Light travels through the vacuum of space at 186,828 miles per second as transverse waves, outside of any material or medium, because photons—the particles that ...

  3. What is light, and how can it travel in a vacuum forever in all

    How can light (or electromagnetic radiation) travel through a vacuum when there is nothing there to act as a medium, and do so forever in all directions? For example the light coming from a star millions of light years away. Light is observed as traveling at velocity v=c, according to the second postulate of special relativity. But according to ...

  4. Anatomy of an Electromagnetic Wave

    Sound waves cannot travel in the vacuum of space because there is no medium to transmit these mechanical waves. ... This means that electromagnetic waves can travel not only through air and solid materials, but also through the vacuum of space. In the 1860's and 1870's, a Scottish scientist named James Clerk Maxwell developed a scientific ...

  5. Sound Really Can Travel in a Vacuum, And We Can Finally ...

    In order to propagate, sound requires a medium to travel through. Sound is generated by vibrations, which causes atoms and molecules in the medium to vibrate; that vibration is passed on to adjacent particles. We sense these vibrations via a sensitive membrane in our ears. A perfect vacuum is a complete absence of a medium.

  6. How fast does light travel?

    The speed of light traveling through a vacuum is exactly 299,792,458 meters (983,571,056 feet) per second. That's about 186,282 miles per second — a universal constant known in equations as "c ...

  7. Three Ways to Travel at (Nearly) the Speed of Light

    To this day, it provides guidance on understanding how particles move through space — a key area of research to keep spacecraft and astronauts safe from radiation. The theory of special relativity showed that particles of light, photons, travel through a vacuum at a constant pace of 670,616,629 miles per hour — a speed that's immensely ...

  8. Why isn't there any sound in space? An astronomer explains why in space

    While space is a good enough vacuum that normal sound can't travel through it, it's actually not a perfect vacuum, and it does have some particles floating through it.

  9. Electromagnetic Waves in Vacuum: Speed, Examples, Properties

    No Material Medium: They do not require a material medium for propagation and can travel through the vacuum of outer space. Energy Transfer: ... Several types of electromagnetic waves can travel through a vacuum, including radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays, and gamma rays. ...

  10. How do electromagnetic waves travel in a vacuum?

    Crucially, unlike mechanical waves (such as sound waves), electromagnetic waves do not require a medium to propagate. This allows them to travel in the emptiness of space - a vacuum - at a constant speed, known as the speed of light (c). In a vacuum, this speed is approximately 299,792 kilometers per second.

  11. How Does Light Travel?

    So how does light travel? Basically, traveling at incredible speeds (299 792 458 m/s) and at different wavelengths, depending on its energy. It also behaves as both a wave and a particle, able to ...

  12. How does a photon know to travel at the speed of light?

    So the short answer to the question is that a photon knows to travel at the speed of light because it is massless. Ken Appleby Ledbury, Herefordshire, UK. What we call photons are actually ...

  13. Turns out you can transmit sound in a vacuum, just not very far

    This was based on the fact that space is a vacuum, a region devoid of any particles. Sound waves travel by vibrating through the particles of a medium, such as air or water, from a source to a ...

  14. How Light Travels: Telescopes Can Show Us the Invisible Universe

    They always travel through the vacuum of space at 186,400 miles per second—the speed of light—which is faster than anything else. Too bad we can glimpse only about 0.0035 percent of the light ...

  15. Does sound travel faster in space?

    Sound does not travel at all in space. The vacuum of outer space has essentially zero air. Because sound is just vibrating air, space has no air to vibrate and therefore no sound. If you are sitting in a space ship and another space ship explodes, you would hear nothing. Exploding bombs, crashing asteroids, supernovas, and burning planets would ...

  16. Is there any sound in space? An astronomer explains

    While space is a good enough vacuum that normal sound can't travel through it, it's actually not a perfect vacuum, and it does have some particles floating through it.

  17. How does sound travel through space?

    A: Sound can't be carried in the empty vacuum of space because sound waves need a medium to vibrate through such as air or water. Until recently, we thought that since there is no air in space, that no sound could travel and that is still true but only up to a point. Space isn't actually completely empty, there are large areas of gas and dust ...

  18. electromagnetic radiation

    Still the fields are there! Therefore, just as a matter wave (which is nothing but a particle), light waves, i.e. waves in the electromagnetic field, can propagate through such a "perfect vacuum". Vacuum fluctuations or quantum mechanics has nothing to do with it. This is true, even in purely classical electromagnetism.

  19. How does light travel?

    Basically, traveling at incredible speeds (299 792 458 m/s) and at different wavelengths, depending on its energy. It also behaves as both a wave and a particle, able to propagate through mediums ...

  20. vacuum

    2. I'm not sure this question has an answer. Science has observed that electromagnetic radiation (including visible light) can travel through a vacuum, and we can use this observation to make predictions. In cases like this one, science doesn't really ask "why", since it would be like asking why do electrons and light display the wave-particle ...

  21. A Quiet Place: 7 Questions I Have About The Aliens After Day One

    Even if they can somehow survive in the vacuum of space and propel themselves through it, the standout thing we know about them is that they can't see but have hyper-sensitive hearing.

  22. How do EM waves travel in a vacuum?

    0. How do EM waves travel in a vacuum? Like waves travel through other things. Electromagnetic waves are comprised of photons, which have an energy E=hf or E=hc/λ where f is frequency and λ is wavelength. The frequency and wavelength are there because photons have a wave nature, not a billiard-ball nature. And as per any wave, the speed ...

  23. Space travel in science fiction

    Rocket on cover of Other Worlds sci-fi magazine, September 1951. Space travel,: 69 : 209-210 : 511-512 or space flight: 200-201 (less often, starfaring or star voyaging: 217, 220 ) is a science-fiction theme that has captivated the public and is almost archetypal for science fiction. Space travel, interplanetary or interstellar, is usually performed in space ships, and spacecraft ...

  24. Gateway: Up Close in Stunning Detail

    NASA and its international partners will explore the scientific mysteries of deep space with Gateway, humanity's first space station to orbit the Moon.Starting with the Artemis IV mission in 2028, the international teams of astronauts living, conducting science, and preparing for missions to the lunar South Pole region on Gateway will be the first humans to make their home in deep space.

  25. electromagnetism

    Electrodynamic theory grants that electromagnetic waves can travel in vacuum, but where the wave is generated is another thing. It travels on the aether! :) The magnetic field produces an electric field and in turn electric field produces a magnetic field explanation of propagation is often cited but wrong.

  26. New study finds evidence of alien travel through space 'warp drives

    A new study has found a theory that 'warp drives' could be possible - this method of fast space travel will be known to many sci-fi and Star Trek fans.. These super powered space engines can manipulate space time as it compresses what's in front of it and expands it behind.. It creates what's called a 'warp bubble' which is how these spacecrafts in the sci-fi world can travel so quickly, some ...

  27. Why cannot longitudinal waves travel through space (vacuum)?

    $\begingroup$ If you mean a perfect vacuum, then there is nothing to displace.However, "space" is not a vacuum. It is, as you say, filled with particles, admittedly a low density, but space is not empty. Longitudinal waves can exist in space, but not in a vacuum.Note also that sound cannot be said to exist in space for two reasons. 1.) sound is a psychophysical phenomenon that exist only in ...