voyager 1 radio

Advertisement

How are the Voyager spacecraft able to transmit radio messages so far?

  • Share Content on Facebook
  • Share Content on LinkedIn
  • Share Content on Flipboard
  • Share Content on Reddit
  • Share Content via Email

The front of a spaceship, showing the control panel.

The two Voyage spacecraft certainly have had an amazing track record. They were sent to photograph planets like Jupiter, Saturn and Neptune and have just kept on going past the outer edge of the solar system. Voyager 1 is currently over 7 billion miles (about 11 billion kilometers) away from Earth and is still transmitting -- it takes about 10 hours for the signal to travel from the spacecraft to Earth!

The Voyager spacecraft use 23-watt radios. This is higher than the 3 watts a typical cell phone uses, but in the grand scheme of things it is still a low-power transmitter. Big radio stations on Earth transmit at tens of thousands of watts and they still fade out fairly quickly.

The key to receiving the signals is therefore not the power of the radio, but a combination of three other things:

  • Very large antenna dishes
  • Directional antennas that point right at each other
  • Radio frequencies without a lot of man-made interference on them

The antenna dishes that the Voyager spacecraft use are big. You may have seen people who have large satellite dishes in their yards. These are typically 2 or 3 meters (6 to 10 feet) in diameter. The Voyager spacecraft has an antenna dish that is 3.7 meters (14 feet) in diameter, and it transmits to a 34 meter (100 feet or so) dish on Earth. The Voyager dish and the Earth dish are pointed right at each other. When you compare your phone's stubby, little omni-directional antenna to a 34 meter directional antenna, you can see the main thing that makes a difference!

The Voyager satellites are also transmitting in the 8 GHz range , and there is not a lot of interference at this frequency. Therefore the antenna on Earth can use an extremely sensitive amplifier and still make sense of the faint signals it receives. Then when the Earth antenna transmits back to the spacecraft, it uses extremely high power (tens of thousands of watts) to make sure the spacecraft gets the message.

Frequently Asked Questions

What role do earth's ground stations play in receiving signals from distant spacecraft like voyager, how has technology advanced to maintain communication with voyager as it moves further away.

Please copy/paste the following text to properly cite this HowStuffWorks.com article:

Voyager 1 was 15 billion miles from home and broken. Here's what NASA did to fix it.

A scrambled computer signal helped NASA engineers resume data transmission from the distant Voyager 1, a spacecraft that was launched in 1977 and now, 15 billion miles from home, is the farthest a human-made object has traveled from Earth.

Voyager 1 – and its sister craft, Voyager 2 – are robotic space probes that became the first spacecraft to leave our solar system and plunge into interstellar space, 11 billion miles from the sun.

Step by step: Details on Voyager 1 fix .

They were designed to last five years , but have become the longest-operating spacecraft in history. Both carry gold-plated copper discs containing sounds and images from Earth, contents that were chosen by a team headed by celebrity astronomer Carl Sagan .

Voyager 2, now 12.7 billion miles from Earth, is functioning normally. However, a computer problem aboard Voyager 1 on Nov. 14, 2023, corrupted the stream of science and engineering data the craft is sending to Earth, making it unreadable , arstechnica.com reported.

Voyager 1 was able to receive communications from Earth and was still transmitting, but its returning signals were a " monotonous dial tone ,” according to space.com.

Unable to see our graphics? Click here to see them .

What's the problem with Voyager 1?

NASA and Jet Propulsion Laboratory engineers traced the problem to one of Voyager’s three onboard computers, one called a Flight Data Subsystem. The system collects information, including:

◾ Data from science instruments that monitor cosmic rays, solar wind particles, the sun's magnetic field, and other phenomena.

◾ Engineering data on spacecraft operating systems.

The Flight Data Subsystem gives that information to the spacecraft’s Telemetry Modulation Unit. The The unit converts the data to binary code – consisting of zeros and ones, the simplest form of computer code – then transmits that code to Earth, using Voyager's 12-foot antenna dish.

The data is received by NASA's Deep Space Network , giant 112-foot radio antennas placed around the world. The network handles space communications from several missions.

In November, the Telemetry Modulation Unit transmissions became a repeating pattern of zeros and ones " as if it were stuck ," NASA said.

Engineers restarted the Flight Data System in December, but that failed to fix the problem.

Voyager 1 is far away – and it's getting old

Voyager 1 has been in space for more than 46 years. Attempts to fix problems aboard the spacecraft often mean "consulting original, decades-old documents written by engineers who didn’t anticipate the issues that are arising today," NASA says. 

Engineers have consulted archived documents to find solutions to other Voyager problems in the past, wired.com says.

Engineers need time to understand how new commands will affect the spacecraft and to avoid unintended consequences. It's a complicated, time-consuming process.

A long time lag makes solving the problem more difficult. Voyager is moving at about 38,000 mph. It takes 22.5 hours for an Earth radio signal to reach Voyager and another 22.5 hours for the spacecraft’s reply to reach antenna networks on Earth.

That means engineers must wait 45 hours to get a response and learn if a command has been successful.

What was the key computer signal?

The key signal was received after engineers "poked" the spacecraft.

◾ March 1: Teams send a command known as a “poke” to Voyager. In essence, the poke tells the Flight Data System to try different sequences in its software program, in the hope a corrupted portion can be found and bypassed.

◾ March 3: Engineers receive a new signal from Voyager that is different from both the unreadable dial tone and the spacecraft’s original transmission stream.

◾ March 7: Engineers begin decoding the signal.

◾ March 10: A Deep Space Network engineer finishes decoding the new signal and finds it contains a readout of the spacecraft’s entire Flight Data System memory. That includes instructions for the spacecraft when it receives commands or when its operational status changes. 

◾ April 4: Engineers trace the problem to a chip in the FDS but are not sure what caused the problem. It could have been hit by an energetic particle from space or was simply worn out because of age, NASA says.

◾ April 18: Controllers send a command to Voyager to reposition the code.

◾ April 20: Voyager sends a transmission indicating the repositioning has worked.

What happens next?

Engineers will reposition the other sections of the code to allow Voyager to resume transmitting science data.

Voyager 2 was launched first on Aug. 20, 1977. Voyager 1 was launched Sept. 5, 1977. It was put on a faster, shorter trajectory, which took it to interstellar space ahead of Voyager 2.

The Voyagers are the only spacecraft in the interstellar void. NASA's New Horizons probe , launched Jan. 19, 2006, flew past Pluto in 2015 and is expected to enter interstellar space in the 2040s.

SOURCE USA TODAY Network reporting and research; NASA/Jet Propulsion Laboratory/California Institute of Technology; Reuters

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

An image of two aircraft in front of a hill covered in snow and rock. In the foreground is the tail end of a white jet, filling the bottom and right side. The NASA logo and number 520 are on the tail. Behind the jet, in the middle of the image, another white aircraft takes off. It’s white with a blue horizontal stripe, with the NASA ‘worm’ logo on the tail. The brown and white hillside fills the rest of the frame.

NASA Mission Flies Over Arctic to Study Sea Ice Melt Causes

Image shows various color gradients across the continential United States with various regions highlighted in yellow, red, purple, and black to highlight TEMPO measurements of increased pollution.

NASA Releases New High-Quality, Near Real-Time Air Quality Data

Greenland glacier

Twin NASA Satellites Ready to Help Gauge Earth’s Energy Balance

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

NASA’s Hubble Temporarily Pauses Science

NASA’s Hubble Temporarily Pauses Science

The waning gibbous Moon is pictured above Earth's horizon from the International Space Station as it orbited 258 miles above the Pacific Ocean northeast of Japan.

Space Station Research Advances NASA’s Plans to Explore the Moon, Mars

A large group photo taken indoors. The background features three large insignias: one for the International Space Station, the NASA logo in the center, and a mission patch on the right.

Welcome Back to Planet Earth, Expedition 70 Crew! 

Cristoforetti wears a hot pink shirt, black pants with white stripes on the side, and blue running shoes and is watching a laptop in front of her. A white harness on her torso connects her to the sides of the green treadmill. Her legs are slightly blurred from the motion of her running and the entire image is tilted to the left so that she seems to be running down a steep hill.

Astronaut Exercise

This computer-generated 3D model of Venus’ surface shows the volcano Sif Mons

Ongoing Venus Volcanic Activity Discovered With NASA’s Magellan Data

C.12 Planetary Instrument Concepts for the Advancement of Solar System Observations POC Change

C.12 Planetary Instrument Concepts for the Advancement of Solar System Observations POC Change

June’s Night Sky Notes: Constant Companions: Circumpolar Constellations, Part III

June’s Night Sky Notes: Constant Companions: Circumpolar Constellations, Part III

What’s Up: June 2024 Skywatching Tips from NASA

What’s Up: June 2024 Skywatching Tips from NASA

Hubble Views the Lights of a Galactic Bar

Hubble Views the Lights of a Galactic Bar

Eventually, our Sun will run out of fuel and die (though not for another 5 billion years). As it does, it will become like the object seen here, the Cat’s Eye Nebula, which is a planetary nebula. A fast wind from the remaining stellar core rams into the ejected atmosphere and pushes it outward, creating wispy structures seen in X-rays by Chandra and optical light by the Hubble Space Telescope.

Travel Through Data From Space in New 3D Instagram Experiences

Discovery Alert: Spock’s Home Planet Goes ‘Poof’

Discovery Alert: Spock’s Home Planet Goes ‘Poof’

Graphic shows a possible future General Electric jet engine with exposed fan blades in front of a cut-away-interior view of its core mechanisms -- all part of NASA's HyTEC research project.

NASA, Industry to Start Designing More Sustainable Jet Engine Core

Two men work at a desk in a NASA office as one points to some Aviary computer code displayed on a monitor. A picture of a future aircraft design appears on a neighboring monitor.

Aviary: A New NASA Software Platform for Aircraft Modelling

voyager 1 radio

NASA’s X-59 Passes Milestone Toward Safe First Flight 

An array of microphones on an airfield, with a sunrise in the background

Tech Today: Measuring the Buzz, Hum, and Rattle

JPL engineers and technicians prepare NASA’s Farside Seismic Suite for testing

NASA to Measure Moonquakes With Help From InSight Mars Mission

Kenyan students surround a computer laptop. They are smiling and laughing at the screen.

NASA Around the World: Interns Teach Virtual Lessons in Kenya

The Moon and Amaey Shah

The Moon and Amaey Shah

two men stand at the base of a test stand

NASA Stennis Helps Family Build a Generational Legacy

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

Voyager signal spotted by earth radio telescopes.

The headshot image of NASA

The signal of NASA’s Voyager 1 spacecraft — the most distant human-made object — has been spotted from Earth by the National Radio Astronomy Observatory’s 5,000-mile-wide (8,000-kilometer-wide) Very Long Baseline Array (VLBA), which links radio telescopes from Hawaii to St. Croix.

These radio telescopes cannot see Voyager 1 in visible light, but rather “see” the spacecraft signal in radio light. Antennas make up a radio telescope like mirrors and pixels make up an optical one. The telescopes made a special attempt to look for Voyager 1’s signal to test their sensitivity.

Voyager 1’s main transmitter radiates around 22 watts, which is comparable to a typical ham radio or a refrigerator light bulb. Though incredibly weak by the standards of modern wireless communications, Voyager 1’s signal is bright when compared to most natural objects studied by radio telescopes.

The VLBA made this image of Voyager 1’s signal on Feb. 21, 2013. At the time, Voyager 1 was 11.5 billion miles (18.5 billion kilometers) away.

The image is about 0.5 arcseconds on a side. An arcsecond is the apparent size of a penny as seen from 2.5 miles (4 kilometers) away. The slightly oblong shape of the image is a result of the array’s configuration.

NASA’s Jet Propulsion Laboratory, Pasadena, Calif., communicates with Voyager 1 practically every day via NASA’s Deep Space Network. The spacecraft, launched in 1977, is currently nearly 12 billion miles (19 billion kilometers) away from the sun.

The Voyager spacecraft were built and continue to be operated by NASA’s Jet Propulsion Laboratory, in Pasadena, Calif. Caltech manages JPL for NASA. The Voyager missions are a part of NASA’s Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate at NASA Headquarters in Washington. 

For more information about Voyager, visit: https://www.nasa.gov/voyager and http://voyager.jpl.nasa.gov .

For more on the National Radio Astronomy Observatory’s finding, visit: http://www.nrao.edu .

Image credit: NRAO/AUI/NSF.

  • Mobile Site
  • Staff Directory
  • Advertise with Ars

Filter by topic

  • Biz & IT
  • Gaming & Culture

Front page layout

Some hope —

Finally, engineers have a clue that could help them save voyager 1, a new signal from humanity's most distant spacecraft could be the key to restoring it..

Stephen Clark - Mar 15, 2024 11:23 pm UTC

Artist's illustration of the Voyager 1 spacecraft.

It's been four months since NASA's Voyager 1 spacecraft sent an intelligible signal back to Earth, and the problem has puzzled engineers tasked with supervising the probe exploring interstellar space.

But there's a renewed optimism among the Voyager ground team based at NASA's Jet Propulsion Laboratory in California. On March 1, engineers sent a command up to Voyager 1—more than 15 billion miles (24 billion kilometers) away from Earth—to "gently prompt" one of the spacecraft's computers to try different sequences in its software package. This was the latest step in NASA's long-distance troubleshooting to try to isolate the cause of the problem preventing Voyager 1 from transmitting coherent telemetry data.

Cracking the case

Officials suspect a piece of corrupted memory inside the Flight Data Subsystem (FDS), one of three main computers on the spacecraft, is the most likely culprit for the interruption in normal communication. Because Voyager 1 is so far away, it takes about 45 hours for engineers on the ground to know how the spacecraft reacted to their commands—the one-way light travel time is about 22.5 hours.

The FDS collects science and engineering data from the spacecraft's sensors, then combines the information into a single data package, which goes through a separate component called the Telemetry Modulation Unit to beam it back to Earth through Voyager's high-gain antenna.

Engineers are almost entirely certain the problem is in the FDS computer. The communications systems onboard Voyager 1 appear to be functioning normally, and the spacecraft is sending a steady radio tone back to Earth, but there's no usable data contained in the signal. This means engineers know Voyager 1 is alive, but they have no insight into what part of the FDS memory is causing the problem.

But Voyager 1 responded to the March 1 troubleshooting command with something different from what engineers have seen since this issue first appeared on November 14.

"The new signal was still not in the format used by Voyager 1 when the FDS is working properly, so the team wasn’t initially sure what to make of it," NASA said in an update Wednesday. "But an engineer with the agency’s Deep Space Network, which operates the radio antennas that communicate with both Voyagers and other spacecraft traveling to the Moon and beyond, was able to decode the new signal and found that it contains a readout of the entire FDS memory."

Now, engineers are meticulously comparing each bit of code from the FDS memory readout to the memory readout Voyager 1 sent back to Earth before the issue arose in November. This, they hope, will allow them to find the root of the problem. But it will probably take weeks or months for the Voyager team to take the next step. They don't want to cause more harm.

"Using that information to devise a potential solution and attempt to put it into action will take time," NASA said.

This is perhaps the most serious ailment the spacecraft has encountered since its launch in 1977. Voyager 1 flew by Jupiter and Saturn before getting a kick from Saturn's gravity to speed into the outer solar system. In 2012, Voyager 1 entered interstellar space when it crossed the heliopause, where the solar wind, the stream of particles emanating from the Sun, push against a so-called galactic wind, the particles that populate the void between the stars.

Engineers have kept Voyager 1 and its twin, Voyager 2, alive for more than 46 years , overcoming technical problems that have doomed other space missions. Both probes face waning power from their nuclear batteries, and there are concerns about their thrusters aging and fuel lines becoming clogged, among other things. But each time there is a problem, ground teams have come up with a trick to keep the Voyagers going, often referencing binders of fraying blueprints and engineering documents from the spacecraft's design and construction nearly 50 years ago.

Suzanne Dodd, NASA's project manager for Voyager 1 and its twin, Voyager 2, recently told Ars that engineers would need to pull off their "biggest miracle" to restore Voyager 1 to normal operations. Now, Voyager 1's voice from the sky has provided engineers with a clue that could help them realize this miracle.

reader comments

Channel ars technica.

To revisit this article, visit My Profile, then View saved stories .

  • Backchannel
  • Newsletters
  • WIRED Insider
  • WIRED Consulting

Stephen Clark, Ars Technica

How NASA Repaired Voyager 1 From 15 Billion Miles Away

The Voyager 1 spacecraft launching

Engineers have partially restored a 1970s-era computer on NASA's Voyager 1 spacecraft after five months of long-distance troubleshooting , building confidence that humanity's first interstellar probe can eventually resume normal operations.

Several dozen scientists and engineers gathered Saturday in a conference room at NASA's Jet Propulsion Laboratory, or connected virtually, to wait for a new signal from Voyager 1. The ground team sent a command up to Voyager 1 on Thursday to recode part of the memory of the spacecraft's Flight Data Subsystem (FDS) , one of the probe's three computers.

“In the minutes leading up to when we were going to see a signal, you could have heard a pin drop in the room,” said Linda Spilker, project scientist for NASA's two Voyager spacecraft at JPL. “It was quiet. People were looking very serious. They were looking at their computer screens. Each of the subsystem (engineers) had pages up that they were looking at, to watch as they would be populated.”

Finally, a Breakthrough

Launched nearly 47 years ago, Voyager 1 is flying on an outbound trajectory more than 15 billion miles (24 billion kilometers) from Earth, and it takes 22.5 hours for a radio signal to cover that distance at the speed of light. This means it takes nearly two days for engineers to uplink a command to Voyager 1 and get a response.

In November, Voyager 1 suddenly stopped transmitting its usual stream of data containing information about the spacecraft's health and measurements from its scientific instruments. Instead, the spacecraft's datastream was entirely unintelligible. Because the telemetry was unreadable, experts on the ground could not easily tell what went wrong. They hypothesized the source of the problem might be in the memory bank of the FDS.

There was a breakthrough last month when engineers sent up a novel command to “poke” Voyager 1's FDS to send back a readout of its memory. This readout allowed engineers to pinpoint the location of the problem in the FDS memory . The FDS is responsible for packaging engineering and scientific data for transmission to Earth.

After a few weeks, NASA was ready to uplink a solution to get the FDS to resume packing engineering data. This datastream includes information on the status of the spacecraft—things like power levels and temperature measurements. This command went up to Voyager 1 through one of NASA's large Deep Space Network antennae on Thursday.

Then, the wait for a response. Spilker, who started working on Voyager right out of college in 1977, was in the room when Voyager 1's signal reached Earth on Saturday.

“When the time came to get the signal, we could clearly see all of a sudden, boom, we had data, and there were tears and smiles and high fives,” she told Ars. “Everyone was very happy and very excited to see that, hey, we're back in communication again with Voyager 1. We're going to see the status of the spacecraft, the health of the spacecraft, for the first time in five months.”

People clapping and cheering in a conference room

By Matt Burgess

Mysterious Hack Destroyed 600,000 Internet Routers

By Dell Cameron

The Best Bookshelf Speakers to Blast Your Tunes

By Ryan Waniata

The 18 Best Movies on Amazon Prime Right Now

By Matt Kamen

Throughout the five months of troubleshooting, Voyager's ground team continued to receive signals indicating the spacecraft was still alive. But until Saturday, they lacked insight into specific details about the status of Voyager 1.

“It’s pretty much just the way we left it,” Spilker said. “We're still in the initial phases of analyzing all of the channels and looking at their trends. Some of the temperatures went down a little bit with this period of time that's gone on, but we're pretty much seeing everything we had hoped for. And that's always good news.”

Relocating Code

Through their investigation, Voyager's ground team discovered that a single chip responsible for storing a portion of the FDS memory had stopped working, probably due to either a cosmic ray hit or a failure of aging hardware. This affected some of the computer's software code.

“That took out a section of memory,” Spilker said. “What they have to do is relocate that code into a different portion of the memory, and then make sure that anything that uses those codes, those subroutines, know to go to the new location of memory, for access and to run it.”

Only about 3 percent of the FDS memory was corrupted by the bad chip, so engineers needed to transplant that code into another part of the memory bank. But no single location is large enough to hold the section of code in its entirety, NASA said.

So the Voyager team divided the code into sections for storage in different places in the FDS. This wasn't just a copy-and-paste job. Engineers needed to modify some of the code to make sure it will all work together. “Any references to the location of that code in other parts of the FDS memory needed to be updated as well,” NASA said in a statement.

Newer NASA missions have hardware and software simulators on the ground, where engineers can test new procedures to make sure they do no harm when they uplink commands to the real spacecraft. Due to its age, Voyager doesn't have any ground simulators, and much of the mission's original design documentation remains in paper form and hasn't been digitized.

“It was really eyes-only to look at the code,” Spilker said. “So we had to triple check. Everybody was looking through and making sure we had all of the links coming together.”

This was just the first step in restoring Voyager 1 to full functionality. “We were pretty sure it would work, but until it actually happened, we didn't know 100 percent for sure,” Spilker said.

“The reason we didn’t do everything in one step is that there was a very limited amount of memory we could find quickly, so we prioritized one data mode (the engineering data mode), and relocated only the code to restore that mode,” said Jeff Mellstrom, a JPL engineer who leads the Voyager 1 “tiger team” tasked with overcoming this problem.

“The next step, to relocate the remaining three actively used science data modes, is essentially the same,” Mellstrom said in a written response to Ars. “The main difference is the available memory constraint is now even tighter. We have ideas where we could relocate the code, but we haven’t yet fully assessed the options or made a decision. These are the first steps we will start this week.”

It could take “a few weeks” to go through the sections of code responsible for packaging Voyager 1's science data in the FDS, Spilker said.

That will be the key payoff, Spilker said. Voyager 1 and its twin spacecraft, Voyager 2, are the only operating probes flying in the interstellar medium, the diffuse gas between the stars. Their prime missions are long over. Voyager 1 flew by Jupiter and Saturn in 1979 and 1980, then got a gravitational boost toward the outer edge of the Solar System. Voyager 2 took a slower trajectory and encountered Jupiter, Saturn, Uranus, and Neptune.

For the past couple of decades, NASA has devoted Voyager's instruments to studying cosmic rays, the magnetic field, and the plasma environment in interstellar space. They're not taking pictures anymore. Both probes have traveled beyond the heliopause, where the flow of particles emanating from the Sun runs into the interstellar medium.

Illustration showing Voyager 1 and Voyager 2 relative to the heliosphere

But any scientific data collected by Voyager 1 since November 14 has been lost. The spacecraft does not have the ability to store science data onboard. Voyager 2 has remained operational during the outage of Voyager 1.

Scientists are eager to get their hands on Voyager 1's science data again. “With the results we got on Saturday, we have new confidence that we can put together the pieces we need to now get back the science data,” Spilker said.

“One thing I'm particularly excited about—there's this feature in the Voyager 1 data. We nicknamed it Pressure Front 2,” Spilker said. “Pressure Front 2 is a jump in both the density of the plasma around the spacecraft and the magnetic field. It's lasted for three-and-a-half years.”

“We'd like to see, is this still there?” she continued. “It's different from what we've seen in the past, and we're trying to figure out, is it some influence coming from the Sun, or is it actually something coming from interstellar space that's creating this feature? So we'd like to see it again, get more data, and be able to study it more carefully.”

This story originally appeared on Ars Technica .

You Might Also Like …

In your inbox: Will Knight's Fast Forward explores advances in AI

Indian voters are being bombarded with millions of deepfakes

They bought tablets in prison —and found a broken promise

The one thing that’s holding back the heat pump

It's always sunny: Here are the best sunglasses for every adventure

Zombie Fire Season Is Here in the Arctic

Sebastian Wieczorek

Gene-Edited Salad Greens Are Coming to US Stores This Fall

Emily Mullin

The Hunt for Ultralight Dark Matter

Lyndie Chiou

Ecuador Is Literally Powerless in the Face of Drought

Hannah Singleton

The Earth Is About to Feast on Dead Cicadas

Victoria St. Martin

Don’t Believe the Biggest Myth About Heat Pumps

Radio Contact with Voyager 1 Re-Established

voyager 1 radio

Contact with NASA's Voyager 1 spacecraft was re established tonight following series of commands transmitted from Earth, ordering Voyager to re-orient itself in space with its antenna pointed to Earth.

It had been determined that loss of radio contact with the craft on Thursday was due to the spacecraft's communication antenna being pointed away from Earth.

This occurred when an optical sensor had locked on the star Alpha Centauri instead of the star Canopus, placing the spacecraft in the wrong orientation for communication with Earth. Why this occurred it being analyzed.

Contact was lost following course-correction maneuver in space, during which radio communication is blacked out, after which the spacecraft should have assumed the proper orientation for radio communications to Earth.

Voyager was 660 million miles from Earth when contact was lost.

The craft is en-route to Saturn for November, 1980, rendezvous and was launched in September, 1977.

JPL manages the Voyager Mission for NASA.

May 30, 2024

Voyager 1’s Revival Offers Inspiration for Everyone on Earth

Instruments may fail, but humanity’s most distant sentinel will keep exploring, and inspiring us all

By Saswato R. Das

Illustration of Voyager spacecraft in front of a galaxy and a bright nearby star in deep space

Artist's rendering of a Voyager spacecraft in deep space.

Dotted Zebra/Alamy Stock Photo

Amid April’s litany of bad news—war in Gaza, protests on American campuses, an impasse in Ukraine—a little uplift came for science buffs.

NASA has reestablished touch with Voyager 1 , the most distant thing built by our species, now hurtling through interstellar space far beyond the orbit of Pluto. The extraordinarily durable spacecraft had stopped transmitting data in November, but NASA engineers managed a very clever work-around, and it is sending data again. Now more than 15 billion miles away, Voyager 1 is the farthest human object, and continues to speed away from us at approximately 38,000 miles per hour.

Like an old car that continues to run, or an uncle blessed with an uncommonly long life, the robotic spacecraft is a super ager that goes on and on—and, in doing so, has captivated space buffs everywhere.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

Launched on September 5, 1977, the one-ton Voyager 1 was meant to chart the outer solar system, in particular the gas giant planets Jupiter and Saturn, and Saturn’s moon, Titan. Its twin, Voyager 2 , launched the same year, followed a different trajectory with a slightly different mission to explore the outer planets before heading to the solar system’s edge.

Those were NASA’s glory days. A few years earlier, NASA had successfully landed men on the moon—and won the space race for the U.S. NASA’s engineers were the envy of the world.

To get to Jupiter and Saturn, both Voyagers had to traverse the asteroid belt, which is full of rocks and debris orbiting the sun. They had to survive cosmic rays, intense radiation from Jupiter and other perils of space. But the two spacecraft made it without a hitch.

President Jimmy Carter held office when Voyager 1 was launched from Cape Canaveral; Elvis Presley had died just three weeks before; gas was about 60 cents a gallon; and, like now, the Middle East was in crisis, with Israeli Prime Minister Menachem Begin and Egyptian President Anwar Sadat trying to find peace.

Voyager 1 sent back spectacular photos of Jupiter and its giant red spot. It showed how dynamic the Jovian atmosphere was, with clouds and storms. It also took pictures of Jupiter’s moon Io, with its volcanoes, and Saturn’s moon Titan , which astronomers think has an atmosphere similar to the primordial Earth’s. The spacecraft discovered a thin ring around Jupiter and two new Jovian moons, which were named Thebe and Metis. On reaching Saturn, it discovered five new moons as well as a new ring.

And then Voyager 1 continued on its journey and sent images back from the edge of the solar system. Many of us remember the Pale Blue Dot , a haunting picture of the Earth it took on Feb 14, 1990, when it was a distance of 3.7 billion miles from the sun. The astronomer Carl Sagan wrote:

“There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we've ever known.”

By then Voyager 1 had long outlived its planetary mission but kept faithfully calling home as it traveled beyond the solar system into the realm of the stars. By 2012 Voyager 1 had reached the heliosphere , the farthest edge of the solar system. There, it penetrated the heliopause, where the solar wind ends, stopped by particles coming from the interstellar medium, the vast space between the stars. (Astronomers know that the space between the stars is not totally empty but permeated by a rarefied gas .)

From Voyager 1, scientists learned that the heliopause is quite dynamic and first measured the magnetic field of the Milky Way beyond the solar system. And its instruments kept sending data as it traveled through the interstellar medium.

On hearing that Voyager 1 had gone dark, I had checked in with Louis Lanzerotti , a former Bell Labs planetary scientist who did the calibrations for the Voyager 1 spacecraft and was a principal investigator on many experiments. He told me that a NASA manager in the 1970s had doubted that the spacecraft’s mechanical scan platform, which pointed instruments at targets, and very thin solid state detectors, which took those edge of the solar system readings, on the spacecraft would survive. They not only survived but worked flawlessly for all this time, Lanzerotti said, providing excellent data for decades. He was overjoyed on hearing the news that Voyager 1 was still alive.

Voyager 1 instruments have power until 2025 . After that, they will shut off, one by one. But there is nothing to stop the spacecraft as it speeds away from us in the vast emptiness of space.

Thousands of years from now, maybe when the human race has left this planet, Voyager 1, the tiny little spacecraft that could, will still continue its inexorable journey to the stars.

This is an opinion and analysis article, and the views expressed by the author or authors are not necessarily those of Scientific American.

NASA solves Voyager 1 data glitch mystery, but finds another

The good news: Voyager 1's telemetry is clear again. The weird: Why did it use a dead computer?

artwork of voyager 1 spacecraft in black space background

NASA's Voyager 1 probe is finally making sense again in interstellar space.

After months of sending junk data about its health to flight controllers on Earth, the 45-year-old Voyager 1 is once again beaming back clear telemetry data on its status beyond our solar system. NASA knew the problem was somewhere in the spacecraft's attitude articulation and control system, or AACS, which keeps Voyager 1's antenna pointed at Earth . But the solution was surprising. 

"The AACS had started sending the telemetry data through an onboard computer known to have stopped working years ago, and the computer corrupted the information ," NASA officials wrote in an update Tuesday (Aug. 30). The rest of the spacecraft was apparently fine, collecting data as it normal.

Related: Celebrate 45 years of Voyager with these amazing images (gallery)

Once engineers began to suspect Voyager 1 was using a dead computer, they simply sent a command to the probe so its AACS system would use the right computer to phone home. It was a low-risk fix, but time consuming. It takes a radio signal nearly 22 hours to reach Voyager 1, which was 14.6 billion miles (23.5 billion kilometers) from Earth and growing farther by the second as of Aug. 30.

With the Voyager 1 data glitch solved, NASA is now pondering a new mystery: what caused it in the first place. 

“We're happy to have the telemetry back," Voyager project manager Suzanne Dodd said in a statement . "We'll do a full memory readout of the AACS and look at everything it's been doing. That will help us try to diagnose the problem that caused the telemetry issue in the first place."

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Related: Voyager 1 marks 10 years in interstellar space

— What's next for NASA's Voyager 2 in interstellar space?

— Scientists' predictions for the long-term future of the Voyager Golden Records will blow your mind

— NASA's twin Voyager probes are nearly 45 — and facing some hard decisions  

Engineers suspect Voyager 1 began routing its health and status telemetry through the dead computer after receiving a bad command from yet another onboard computer. That would suggest some other problem lurking inside Voyager 1's computer brains, but mission managers don't think it's a threat to the iconic spacecraft's long-term health.

Still, they'd like to know exactly what's going inside Voyager 1. 

"So we're cautiously optimistic, but we still have more investigating to do," Dodd said in the statement. 

NASA launched the Voyager 1 spacecraft, and its twin Voyager 2 , in 1977 on a mission to explore the outer planets of the solar system. Voyager 1 flew by Jupiter and Saturn during its primary mission and kept going, ultimately entering interstellar space in 2012 , with Voyager 2 reaching that milestone in 2018. 

You can track the status of Voyager 1 and Voyager 2 on this NASA website .

Email Tariq Malik at  [email protected]  or follow him  @tariqjmalik . Follow us  @Spacedotcom ,  Facebook  and  Instagram .

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Tariq is the Editor-in-Chief of Space.com and joined the team in 2001, first as an intern and staff writer, and later as an editor. He covers human spaceflight, exploration and space science, as well as skywatching and entertainment. He became Space.com's Managing Editor in 2009 and Editor-in-Chief in 2019. Before joining Space.com, Tariq was a staff reporter for The Los Angeles Times covering education and city beats in La Habra, Fullerton and Huntington Beach. In October 2022, Tariq received the Harry Kolcum Award for excellence in space reporting from the National Space Club Florida Committee. He is also an Eagle Scout (yes, he has the Space Exploration merit badge) and went to Space Camp four times as a kid and a fifth time as an adult. He has journalism degrees from the University of Southern California and New York University. You can find Tariq at Space.com and as the co-host to the This Week In Space podcast with space historian Rod Pyle on the TWiT network . To see his latest project, you can follow Tariq on Twitter @tariqjmalik .

China lands Chang'e 6 sample-return probe on far side of the moon, a lunar success (video)

Science and music festival Starmus VII is about to rock Bratislava with a stellar lineup

Astrophotographer captures stunning close-up views of sunspot region that spawned May's auroras

Most Popular

  • 2 How auroras on Earth, Saturn and Jupiter could help forecast risky space weather
  • 3 'We awaken to take what is ours:' Watch the haunting new trailer for 'Warhammer 40K: Mechanicus 2' (video)
  • 4 China lands Chang'e 6 sample-return probe on far side of the moon, a lunar success (video)
  • 5 Boeing's 1st Starliner astronaut launch aborted minutes before liftoff (video)

voyager 1 radio

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

golden record  /  whats on the record

Music from earth.

The following music was included on the Voyager record.

  • Bach, Brandenburg Concerto No. 2 in F. First Movement, Munich Bach Orchestra, Karl Richter, conductor. 4:40
  • Java, court gamelan, "Kinds of Flowers," recorded by Robert Brown. 4:43
  • Senegal, percussion, recorded by Charles Duvelle. 2:08
  • Zaire, Pygmy girls' initiation song, recorded by Colin Turnbull. 0:56
  • Australia, Aborigine songs, "Morning Star" and "Devil Bird," recorded by Sandra LeBrun Holmes. 1:26
  • Mexico, "El Cascabel," performed by Lorenzo Barcelata and the Mariachi México. 3:14
  • "Johnny B. Goode," written and performed by Chuck Berry. 2:38
  • New Guinea, men's house song, recorded by Robert MacLennan. 1:20
  • Japan, shakuhachi, "Tsuru No Sugomori" ("Crane's Nest,") performed by Goro Yamaguchi. 4:51
  • Bach, "Gavotte en rondeaux" from the Partita No. 3 in E major for Violin, performed by Arthur Grumiaux. 2:55
  • Mozart, The Magic Flute, Queen of the Night aria, no. 14. Edda Moser, soprano. Bavarian State Opera, Munich, Wolfgang Sawallisch, conductor. 2:55
  • Georgian S.S.R., chorus, "Tchakrulo," collected by Radio Moscow. 2:18
  • Peru, panpipes and drum, collected by Casa de la Cultura, Lima. 0:52
  • "Melancholy Blues," performed by Louis Armstrong and his Hot Seven. 3:05
  • Azerbaijan S.S.R., bagpipes, recorded by Radio Moscow. 2:30
  • Stravinsky, Rite of Spring, Sacrificial Dance, Columbia Symphony Orchestra, Igor Stravinsky, conductor. 4:35
  • Bach, The Well-Tempered Clavier, Book 2, Prelude and Fugue in C, No.1. Glenn Gould, piano. 4:48
  • Beethoven, Fifth Symphony, First Movement, the Philharmonia Orchestra, Otto Klemperer, conductor. 7:20
  • Bulgaria, "Izlel je Delyo Hagdutin," sung by Valya Balkanska. 4:59
  • Navajo Indians, Night Chant, recorded by Willard Rhodes. 0:57
  • Holborne, Paueans, Galliards, Almains and Other Short Aeirs, "The Fairie Round," performed by David Munrow and the Early Music Consort of London. 1:17
  • Solomon Islands, panpipes, collected by the Solomon Islands Broadcasting Service. 1:12
  • Peru, wedding song, recorded by John Cohen. 0:38
  • China, ch'in, "Flowing Streams," performed by Kuan P'ing-hu. 7:37
  • India, raga, "Jaat Kahan Ho," sung by Surshri Kesar Bai Kerkar. 3:30
  • "Dark Was the Night," written and performed by Blind Willie Johnson. 3:15
  • Beethoven, String Quartet No. 13 in B flat, Opus 130, Cavatina, performed by Budapest String Quartet. 6:37
  • Ways To Listen
  • Meet the Team
  • Show Schedules

Voyager Radio

Welcome to Voyager Radio

Your favourite internet radio station.

Welcome to the website for Voyager Radio. All pages are responsive and therefore should be viewable on all devices and browsers. Have a good look around. View the site in Landscape (Wide) orientation where possible for the best experience, although Portrait (Narrow) will work on smaller devices. The top Navigation Menu stays in view wherever you are on a page. On smaller screens, it appears as an “Accordion” menu button. You may also find on smaller screens that some of the Sidebar links will appear at the bottom of the page rather than on the right. Throughout the site, some text-based links will appear in Red text and open pages or External Sites.

Content Safety

Trustworthy.

Approved by Sur.ly

You can listen to the Station while you are browsing the website by clicking on the “Listen Live” image in the right Sidebar which opens the Pop-Up player. The pop-up player tab can then be left open while you browse the website (Works on all devices).

The Pop-up Player page will open in a new tab or window on most devices. Then click the Play button on the top left of the Player page to listen. On computers, the red coloured bar on the player acts as a volume control. Please note: Please turn off any pop-up blockers or whitelist our website if the pop-up player won’t open.

Why not join our Chatroom? Click the “Get Interactive” image in the top right Sidebar. The Chatroom will open in a separate tab. You can log in as a User or Guest account. User accounts have more privileges than Guest accounts. Please join us when a “Live” DJ is on air and have a chat! We don’t bite and the DJs and other listeners would love to have a chat with you. You can also request your favourite tunes from the on-air DJ in the chatroom using the “Private Chat” option.

Not a fan of Chatrooms? No problem! If you use Facebook Messenger you can contact any of the DJs via their Facebook Profile page links on the “Meet the Team” page and individual DJs’ Profile pages.

We’re funded and managed purely by Volunteers.

If you enjoy what you hear please consider a donation no matter how small by using the Donate button below.

If you tick the boxes “I’d like to add to my donation to help offset the cost of processing fees” (A figure will be shown once the donation amount is selected or typed in) and/or “Make this a monthly donation” this helps us even more.

Every donation goes purely towards the running costs of the Station. Thank you very much.

generic footer image

Cookies Consent

Privacy overview.

NASA Logo

Golden Record Sounds and Music

Sounds of earth.

The following is a listing of sounds electronically placed onboard the Voyager 1 and 2 spacecraft.

Music from Earth

The following music was included on the Voyager record.

Discover More Topics From NASA

Splotches of bright-pink and blue-white fill the lower half of the image. A bright bar of white stars extends downward from top-center toward the left. Random areas of dusty clouds form dark streams against the bright backdrop.

Our Solar System

An illustration of a slice of a bright orange sun, with planets, a comet and asteroids against a blue-black backround.

Things are finally looking up for the Voyager 1 interstellar spacecraft

Two of the four science instruments aboard the Voyager 1 spacecraft are now returning usable data after months of transmitting only gibberish, NASA scientists have announced.

Voyager 1

I was once sitting with my father while Googling how far away various things in the solar system are from Earth. He was looking for exact numbers, and very obviously grew more invested with each new figure I shouted out. I was thrilled. The moon? On average, 238,855 miles (384,400 kilometers) away. The James Webb Space Telescope ? Bump that up to about a million miles (1,609,344 km) away. The sun? 93 million miles (149,668,992 km) away.  Neptune ? 2.8  billion  miles (4.5 billion km) away. "Well, wait until you hear about Voyager 1," I eventually said, assuming he was aware of what was coming. He was not.

"NASA's  Voyager 1  interstellar spacecraft actually isn't even in the solar system anymore," I announced. "Nope, it's more than 15 billion miles (24 billion km)  away from us  — and it's getting even farther as we speak." I can't quite remember his response, but I do indeed recall an expression of sheer disbelief. There were immediate inquiries about how that's even physically possible. There were bewildered laughs, different ways of saying "wow," and mostly, there was a contagious sense of awe. And just like that, a new Voyager 1 fan was born.

It is easy to see why Voyager 1 is among the most beloved robotic space explorers we have — and it is thus easy to understand why so many people felt a pang to their hearts several months ago, when Voyager 1 stopped talking to us.

Related:  After months of sending gibberish to NASA, Voyager 1 is finally making sense again

For reasons unknown at the time, this spacecraft began sending back gibberish in place of the neatly organized and data-rich 0's and 1's it had been providing since its  launch in 1977 . It was this classic computer language which allowed Voyager 1 to converse with its creators while earning the title of "farthest human made object." It's how the spacecraft relayed vital insight that led to the discovery of new Jovian moons and, thanks to this sort of binary podcast, scientists incredibly identified a new ring of Saturn and created the solar system's first and only "family portrait." This code, in essence, is crucial to Voyager 1's very being.

Plus, to make matters worse, the issue behind the glitch turned out to be associated with the craft's Flight Data System, which is literally the system that transmits information about Voyager 1's health so scientists can correct any issues that arise. Issues like this one. Furthermore, because of the spacecraft's immense distance from its operators on Earth, it takes about 22.5 hours for a transmission to reach the spacecraft, and then 22.5 hours to receive a transmission back. Alas, things weren't looking good for a while — for about five months, to be precise.

But then, on April 20, Voyager 1  finally phoned home  with legible 0's and legible 1's.

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Earth as a

"The team had gathered early on a weekend morning to see whether telemetry would return," Bob Rasmussen, a member of the Voyager flight team, told Space.com. "It was nice to have everyone assembled in one place like this to share in the moment of learning that our efforts had been successful. Our cheer was both for the intrepid spacecraft and for the comradery that enabled its recovery."

And  then,  on May 22 , Voyager scientists released the welcome announcement that the spacecraft has successfully resumed returning science data from two of its four instruments, the plasma wave subsystem and magnetometer instrument. They're now working on getting the other two, the cosmic ray subsystem and low energy charged particle instrument, back online as well. Though there technically are six other instruments onboard Voyager, those had been out of commission for some time.

The comeback

Rasmussen was actually a member of the Voyager team in the 1970s, having worked on the project as a computer engineer before leaving for other missions including  Cassini , which launched the spacecraft that taught us almost everything we currently know about Saturn. In 2022, however, he returned to Voyager because of a separate dilemma with the mission — and has remained on the team ever since.

"There are many of the original people who were there when Voyager launched, or even before, who were part of both the flight team and the science team," Linda Spilker, a planetary scientist at NASA's Jet Propulsion Laboratory , who also worked on the Voyager mission, told Space.com in the This Week from Space podcast on the TWiT network. "It's a real tribute to Voyager — the longevity not only of the spacecraft, but of the people on the team."

To get Voyager 1 back online, in rather cinematic fashion, the team devised a complex workaround that prompted the FDS to send a copy of its memory back to Earth. Within that memory readout, operators managed to discover the crux of the problem — a corrupted code spanning a single chip — which was then remedied through another (honestly,  super interesting ) process to modify the code. On the day Voyager 1 finally spoke again, "you could have heard a pin drop in the room," Spilker said. "It was very silent. Everybody's looking at the screen, waiting and watching." 

The rocket that launched Voyager 1 in 1977.

Of course, Spilker also brought in some peanuts for the team to munch on — but not just any peanuts. Lucky peanuts. 

It's a longstanding tradition at JPL to have a peanut feast before major mission events like launches, milestones and, well, the possible resurrection of Voyager 1. It  began  in the 1960s, when the agency was trying to launch the Ranger 7 mission that was meant to take pictures of and collect data about the moon's surface. Rangers 1 through 6 had all failed, so Ranger 7 was a big deal. As such, the mission's trajectory engineer, Dick Wallace, brought lots of peanuts for the team to nibble on and relax. Sure enough, Ranger 7 was a success and, as Wallace once said, "the rest is history." 

Voyager 1 needed some of those positive snacky vibes. 

"It'd been five months since we'd had any information," Spilker explained. So, in this room of silence besides peanut-eating-noises, Voyager 1 operators sat at their respective system screens, waiting. 

"All of a sudden it started to populate — the data," Spilker said. That's when the programmers who had been staring at those screens in anticipation leapt out of their seats and began to cheer: "They were the happiest people in the room, I think, and there was just a sense of joy that we had Voyager 1 back."

flight team of voyager 1

Eventually, Rasmussen says the team was able to conclude that the failure probably occurred due to a combination of aging and radiation damage by which energetic particles in space bombarded the craft. This is also why he believes it wouldn't be terribly surprising to see a similar failure occur in the future, seeing as Voyager 1 is still roaming beyond the distant boundaries of our stellar neighborhood just like its spacecraft twin,  Voyager 2 .

To be sure, the spacecraft isn't fully fixed yet — but it's lovely to know things are finally looking up, especially with the recent news that some of its science instruments are back on track. And, at the very least, Rasmussen assures that nothing the team has learned so far has been alarming. "We're confident that we understand the problem well," he said, "and we remain optimistic about getting everything back to normal — but we also expect this won't be the last."

The trajectory of the Voyagers.

In fact, as Rasmussen explains, Voyager 1 operators first became optimistic about the situation just after the root cause of the glitch had been determined with certainty. He also emphasizes that the team's spirits were never down. "We knew from indirect evidence that we had a spacecraft that was mostly healthy," he said. "Saying goodbye was not on our minds."

"Rather," he continued, "we wanted to push toward a solution as quickly as possible so other matters on board that had been neglected for months could be addressed. We're now calmly moving toward that goal."

The future of Voyager's voyage

It can't be ignored that, over the last few months, there has been an air of anxiety and fear across the public sphere that Voyager 1 was slowly moving toward sending us its final 0 and final 1. Headlines all over the internet, one written by  myself included , have carried clear, negative weight. I think it's because even if Voyager 2 could technically carry the interstellar torch post-Voyager 1, the prospect of losing Voyager 1 felt like the prospect of losing a piece of history. 

"We've crossed this boundary called the heliopause," Spilker explained of the Voyagers. "Voyager 1 crossed this boundary in 2012; Voyager 2 crossed it in 2018 — and, since that time, were the first spacecraft ever to make direct measurements of the interstellar medium." That medium basically refers to material that fills the space between stars. In this case, that's the space between other stars and our sun, which, though we don't always think of it as one, is simply another star in the universe. A drop in the cosmic ocean.

"JPL started building the two Voyager spacecraft in 1972," Spilker explained. "For context, that was only three years after we had the first human walk on the moon — and the reason we started that early is that we had this rare alignment of the planets that happens once every  176 years ." It was this alignment that could promise the spacecraft checkpoints across the solar system, including at Jupiter, Saturn, Uranus and Neptune. Those checkpoints were important for the Voyagers in particular. Alongside planetary visits come gravity assists, and gravity assists can help fling stuff within the solar system — and, now we know, beyond.

As the first humanmade object to leave the solar system, as a relic of America's early space program, and as a testament to how robust even decades-old technology can be, Voyager 1 has carved out the kind of legacy usually reserved for remarkable things lost to time.

The

"Our scientists are eager to see what they’ve been missing," Rasmussen remarked. "Everyone on the team is self-motivated by their commitment to this unique and important project. That's where the real pressure comes from." 

Still, in terms of energy, the team's approach has been clinical and determined. 

— NASA's Voyager 1 sends readable message to Earth after 4 nail-biting months of gibberish

— NASA engineers discover why Voyager 1 is sending a stream of gibberish from outside our solar system

— NASA's Voyager 1 probe hasn't 'spoken' in 3 months and needs a 'miracle' to save it

"No one was ever especially excited or depressed," he said. "We're confident that we can get back to business as usual soon, but we also know that we're dealing with an aging spacecraft that is bound to have trouble again in the future. That's just a fact of life on this mission, so not worth getting worked up about."

Nonetheless, I imagine it's always a delight for Voyager 1's engineers to remember this robotic explorer occupies curious minds around the globe. (Including my dad's mind now, thanks to me and Google.)

As Rasmussen puts it: "It's wonderful to know how much the world appreciates this mission."

Originally posted on Space.com .

Monisha Ravisetti is Space.com's Astronomy Editor. She covers black holes, star explosions, gravitational waves, exoplanet discoveries and other enigmas hidden across the fabric of space and time. Previously, she was a science writer at CNET, and before that, reported for The Academic Times. Prior to becoming a writer, she was an immunology researcher at Weill Cornell Medical Center in New York. She graduated from New York University in 2018 with a B.A. in philosophy, physics and chemistry. She spends too much time playing online chess. Her favorite planet is Earth.

China's secret space plane has released another unknown object over Earth

NASA details plan to build a levitating robot train on the moon

Earth from space: Shapeshifting rusty river winds through Madagascar's 'red lands'

Most Popular

  • 2 Why are so many ancient Egyptians buried at the Saqqara necropolis?
  • 3 Elusive 'octopus squid' with world's largest biological lights attacks camera in striking new video
  • 4 3,500-year-old rock art of wild sheep and double-humped camels revealed in Kazakhstan
  • 5 Solar power generated enough heat to power a steel furnace
  • 2 Wreck of WWII 'Hit 'Em Harder' submarine, which sank with 79 crew on board, discovered in South China Sea
  • 3 3,500-year-old rock art of wild sheep and double-humped camels revealed in Kazakhstan
  • 4 GPT-4 didn't ace the bar exam after all, MIT research suggests — it didn't even break the 70th percentile
  • 5 32 unusual medical cases

voyager 1 radio

Nous et un nombre restreint de nos partenaires publicitaires utilisons des témoins pour recueillir certaines de vos données et les utilisons afin d’améliorer votre expérience et de vous présenter des contenus et des publicités personnalisés. Si vous n’êtes pas à l’aise avec l’utilisation de ces informations, veuillez revoir les paramètres de confidentialité de votre appareil et de votre navigateur  (Nouvelle fenêtre)  avant de poursuivre votre visite. En savoir plus  (Nouvelle fenêtre) 

Vous naviguez sur le site de Radio-Canada

Début du contenu

Rattrapage du 2 juin 2024 : La multiplication des débris spatiaux, et le rêve inachevé de la fusion nucléaire

Christophe Bonnal, ingénieur chez Maia Space, explique pourquoi une meilleure gestion des débris provenant de l’espace est souhaitable; Gino Harel nous parle des effets de la chenille ravageuse sur les écosystèmes du Québec; et Renaud Manuguerra-Gagné décrit les nombreux efforts des scientifiques déployés depuis les années 1950 afin de réaliser la fusion nucléaire.

Sommaire de l'émission avec Marie-Pier Elie

La responsabilité en cas de chute de débris spatiaux, les risques d'accidents causés par les débris spatiaux augmentent, la représentation artistique des dinosaures, la livrée des forêts : les explications de gino harel, des chenilles dont les ravages cachent le rôle écosystémique, la sonde voyager 1 en milieu interstellaire, l'adn viral ancien dans le génome humain, l'histoire de la fusion nucléaire : chronique de renaud manuguerra-gagné, les bienfaits de la nature sous la loupe de la science, quelques nouvelles scientifiques de la semaine.

voyager 1 radio

Russia Extends Detention of U.S.-Russian Journalist Kurmasheva Until August

A Russian court on Friday extended the pre-trial detention of U.S.-Russian journalist Alsu Kurmasheva until August, nearly a year after she was first charged with spreading "false information" about the army.

Kurmasheva, who works for Radio Free Europe/Radio Liberty (RFE/RL), was arrested last year for failing to register as a "foreign agent."

She was subsequently charged with spreading "false information" under wartime censorship laws that were introduced following Russia's full-scale invasion of Ukraine in 2022. She faces up to 15 years in prison.

A court spokeswoman said Friday that she could not confirm the charges pressed against Kurmasheva since the hearing was closed to the public.

The deputy spokesperson for the U.S. Embassy in Moscow, Daniel Kanigan, told AFP that Washington was "closely following the outcome" of the hearing.

"The United States condemns these ongoing persecutions, which are a tragedy for the entire people of Russia, who have a constitutionally guaranteed right to freedom of the press," Kanigan said. "Journalism is not a crime."

Kurmasheva is "a dedicated journalist who is detained for her uncompromising commitment to reporting the truth to the Russian people, regardless of whether the truth makes the Kremlin uncomfortable," he added.

Kurmasheva, who lived in Prague with her husband and two children, had her U.S. and Russian passports confiscated last June after traveling to Russia for a family emergency.

She is the second U.S. journalist to be arrested in Russia since Moscow's full-scale invasion.

Russia Extends Detention of U.S.-Russian Journalist Kurmasheva Until August

IMAGES

  1. Voyager 1's Radio Signal 'Photographed' From Earth

    voyager 1 radio

  2. Radio signal from Nasa's Voyager 1 as it travels outside our solar

    voyager 1 radio

  3. Radio signal from Nasa's Voyager 1 as it travels outside our solar

    voyager 1 radio

  4. Historical Audio Recordings: Voyager 1 Spacecraft

    voyager 1 radio

  5. Multimedialne radio Chrysler Voyager 2001-2007 , DVD+ GPS+ BT

    voyager 1 radio

  6. Ausflug eine Erkältung bekommen vergeben voyager 1 radio frequency

    voyager 1 radio

VIDEO

  1. Is This The End of Voyager 1? Here's What's Happening With the Probe

  2. Voyager 1 Sending Strange Signals! #shorts

  3. Voyager 1 Probe Is Started Sending Mysterious Data From Interstellar Space. @thecosmosnews

  4. सबसे दूर जाने वाला अंतरिक्ष यान

  5. Voyager 1 Stuns NASA with Mysterious Encounter in Interstellar Space

  6. Voyager 1 Resumes Sending Updates to Earth

COMMENTS

  1. Voyager 1

    Voyager 1 is a space probe launched by NASA on September 5, 1977, ... Image of Voyager 1 ' s radio signal on February 21, 2013. In December 2017, NASA successfully fired all four of Voyager 1 ' s trajectory correction maneuver (TCM) thrusters for the first time since 1980. The TCM thrusters were used in the place of a degraded set of jets to ...

  2. How do the Voyager spacecraft transmit radio signals so far

    Voyager 1 is currently over 7 billion miles (about 11 billion kilometers) away from Earth and is still transmitting -- it takes about 10 hours for the signal to travel from the spacecraft to Earth! The Voyager spacecraft use 23-watt radios. This is higher than the 3 watts a typical cell phone uses, but in the grand scheme of things it is still ...

  3. Voyager

    The elapsed time it takes for light (or radio signals) to travel between the Earth and a celestial object. Note: Because Earth moves around the Sun faster than Voyager 1 or Voyager 2 is traveling from Earth, the one-way light time between Earth and each spacecraft actually decreases at certain times of the year. Cosmic Ray Data

  4. NASA's Voyager 1 Resumes Sending Engineering Updates to Earth

    A radio signal takes about 22 ½ hours to reach Voyager 1, which is over 15 billion miles (24 billion kilometers) from Earth, and another 22 ½ hours for a signal to come back to Earth. When the mission flight team heard back from the spacecraft on April 20, they saw that the modification worked: For the first time in five months, they have ...

  5. NASA's Voyager 1 spacecraft finally phones home after 5 months of no

    This was a painstaking process, as a radio signal takes 22.5 hours to traverse the distance between Earth and Voyager 1, and it then takes another 22.5 hours to get a signal back from the craft.

  6. NASA has fixed Voyager 1 radio link from 15 billion miles away

    Voyager 1, which left Earth 46 years ago, is now 15 billion miles away. ... It takes 22.5 hours for an Earth radio signal to reach Voyager and another 22.5 hours for the spacecraft's reply to ...

  7. Voyager Signal Spotted By Earth Radio Telescopes

    The signal of NASA's Voyager 1 spacecraft — the most distant human-made object — has been spotted from Earth by the National Radio Astronomy Observatory's 5,000-mile-wide (8,000-kilometer-wide) Very Long Baseline Array (VLBA), which links radio telescopes from Hawaii to St. Croix. These radio telescopes cannot see Voyager 1 in visible ...

  8. Finally, engineers have a clue that could help them save Voyager 1

    The communications systems onboard Voyager 1 appear to be functioning normally, and the spacecraft is sending a steady radio tone back to Earth, but there's no usable data contained in the signal.

  9. Voyager

    This tells how long it would take a radio signal transmitted right now, traveling at the speed of light, to get either from Earth to Voyager 1 or from Voyager 1 to Earth. ... Data from this instrument suggested that Voyager 1 entered interstellar space on Aug. 25, 2012, when the inside particles (green) dipped closer to 0.0 and the outside ...

  10. Instruments

    The identical Voyager spacecraft are three-axis stabilized systems that use celestial or gyro referenced attitude control to maintain pointing of the high-gain antennas toward Earth. The prime mission science payload consisted of 10 instruments (11 investigations including radio science).

  11. How NASA Repaired Voyager 1 From 15 Billion Miles Away

    Launched nearly 47 years ago, Voyager 1 is flying on an outbound trajectory more than 15 billion miles (24 billion kilometers) from Earth, and it takes 22.5 hours for a radio signal to cover that ...

  12. Voyager 1 regains communications with NASA after inventive fix

    Given Voyager 1's immense distance from Earth, it takes a radio signal about 22.5 hours to reach the probe, and another 22.5 hours for a response signal from the spacecraft to reach Earth.

  13. Radio Contact with Voyager 1 Re-Established

    Radio Contact with Voyager 1 Re-Established. Dec. 14, 1979. This artist's concept shows NASA's Voyager spacecraft against a backdrop of stars. Contact with NASA's Voyager 1 spacecraft was re established tonight following series of commands transmitted from Earth, ordering Voyager to re-orient itself in space with its antenna pointed to Earth.

  14. We finally know why NASA's Voyager 1 spacecraft stopped communicating

    Voyager 1 currently sits around 15 billion miles (24 billion kilometers) from Earth, which means it takes 22.5 hours to receive a radio signal from it — and another 22.5 hours for the spacecraft ...

  15. Radio Contact with Voyager 1 Re-Established

    Contact with NASA's Voyager 1 spacecraft was re established tonight following series of commands transmitted from Earth, ordering Voyager to re-orient itself in space with its antenna pointed to Earth. It had been determined that loss of radio contact with the craft on Thursday was due to the spacecraft's communication antenna being pointed away from […]

  16. Voyager 1 spacecraft has sent a (partly) decipherable message

    Voyager 1 is starting to make some sense. Since November 2023, NASA's Voyager 1 spacecraft has been sending a steady radio signal to Earth, but the signal does not contain usable data. The ...

  17. Voyager 1

    Radio Science System (RSS) Voyager 1 at Jupiter. Voyager 1 began its Jovian imaging mission in April 1978 at a range of 165 million miles (265 million km) from the planet. Images sent back by January the following year indicated that Jupiter's atmosphere was more turbulent than during the Pioneer flybys in 1973-1974. ... Voyager 1 found ...

  18. Voyager 1 (and Half Its Instruments) Are Back Online

    An artist's concept, of Voyager 1 in deep space. NASA. Things are looking better for one of NASA's longest running deep space missions. After a several-month period of problems, engineers have announced that the Voyager 1 spacecraft is not only back online but also transmitting useful data from two of four science instruments. Work is now underway to bring the remaining two instruments up to ...

  19. Voyager 1's Revival Offers Inspiration for Everyone on Earth

    Voyager 1 sent back spectacular photos of Jupiter and its giant red spot. It showed how dynamic the Jovian atmosphere was, with clouds and storms. It also took pictures of Jupiter's moon Io, ...

  20. NASA solves Voyager 1 data glitch mystery, but finds another

    It takes a radio signal nearly 22 hours to reach Voyager 1, which was 14.6 billion miles (23.5 billion kilometers) from Earth and growing farther by the second as of Aug. 30.

  21. Voyager 1 Planetary Radio Astronomy Observations Near Jupiter

    Abstract. We report results from the first low-frequency radio receiver to be transported into the Jupiter magnetosphere. We obtained dramatic new information, both because Voyager was near or in Jupiter's radio emission sources and also because it was outside the relatively dense solar wind plasma of the inner solar system. Extensive radio ...

  22. The Signal's Golden Record Explained: The True Story Of The Voyager's

    Voyager 1 and 2 are real spacecrafts launched from Cape Canaveral, Florida, in 1977. ... Recorded by Radio Moscow "Rite of Spring, Sacrificial Dance" Stravinsky. Columbia Symphony Orchestra ...

  23. Voyager

    Holborne, Paueans, Galliards, Almains and Other Short Aeirs, "The Fairie Round," performed by David Munrow and the Early Music Consort of London. 1:17; Solomon Islands, panpipes, collected by the Solomon Islands Broadcasting Service. 1:12; Peru, wedding song, recorded by John Cohen. 0:38; China, ch'in, "Flowing Streams," performed by Kuan P'ing ...

  24. Welcome

    Welcome to the website for Voyager Radio. All pages are responsive and therefore should be viewable on all devices and browsers. Have a good look around. View the site in Landscape (Wide) orientation where possible for the best experience, although Portrait (Narrow) will work on smaller devices. The top Navigation Menu stays in view wherever ...

  25. Golden Record Sounds and Music

    Sounds of Earth The following is a listing of sounds electronically placed onboard the Voyager 1 and 2 spacecraft. Music from Earth The following music was included on the Voyager record. Country of origin Composition Artist(s) Length Germany Bach, Brandenburg Concerto No. 2 in F. First Movement Munich Bach Orchestra, Karl Richter, conductor 4:40 Java […]

  26. Things are finally looking up for the Voyager 1 interstellar spacecraft

    "NASA's Voyager 1 interstellar spacecraft actually isn't even in the solar system anymore," I announced. "Nope, it's more than 15 billion miles (24 billion km) away from us — and it's getting ...

  27. Rattrapage du dimanche 2 juin 2024

    Vous naviguez sur le site de Radio-Canada. Aller au contenu principal Aller au pied de page Aide à la navigation. ... La sonde Voyager 1 en milieu interstellaire. Durée de 11 minutes 11 min ...

  28. Russia Extends Detention of U.S.-Russian Journalist Kurmasheva ...

    A Russian court on Friday extended the pre-trial detention of U.S.-Russian journalist Alsu Kurmasheva until August, nearly a year after she was first charged with spreading "false information ...