• Share full article

Advertisement

Supported by

NASA Reaches Voyager 2 With a Last-Ditch ‘Shout’ Across the Void

After an erroneous command sent the spacecraft’s antenna askew, mission specialists hatched a plan to point it back toward Earth.

An aerial view looking down on a large white deep space antenna and a facility in a hilly area with several other large radio antennas.

By Katrina Miller

It took an interstellar “shout” across the solar system. But NASA’s Jet Propulsion Laboratory said on Friday that it re-established full communications with Voyager 2, an aging probe exploring the outer edges of the solar system.

“After two weeks of not hearing anything, we’re back to getting unique data from the interstellar medium,” said Linda Spilker, a planetary scientist at the Jet Propulsion Laboratory and the lead mission scientist for Voyager 2.

The space agency lost contact with Voyager 2 on July 21 when the mission team accidentally sent a command that pushed the spacecraft’s antenna two degrees away from Earth. On Tuesday morning, officials from the Deep Space Network, a worldwide system of radio dishes NASA uses to communicate with various space probes, detected a carrier signal known as a heartbeat from Voyager 2. It was too faint to extract any data, but enough to confirm that the mission was still operating.

Nonetheless, being able to pick up only the heartbeat “was upsetting and worrisome,” said Suzanne Dodd, the project manager for Voyager 2.

The mission team hatched a plan to send a command on Wednesday reorienting Voyager 2’s antenna back to Earth, using a Deep Space Network radio dish in Canberra, Australia.

The chances of success were slim, according to a spokeswoman at the Jet Propulsion Laboratory. It took 37 hours to know whether the attempt was successful — 18.5 hours for the signal to make it to Voyager 2, and another 18.5 for the data to return.

Ms. Dodd said the waiting period “was pretty nervewracking. You don’t sleep well.”

Scientists, engineers and the flight team were “waiting on pins and needles to hear back from Voyager 2, to see if the command was successful,” Dr. Spilker said. “It was all hands on deck.”

But it worked: On Friday at 12:29 a.m. Eastern time, Voyager 2 began transmitting science data once again. Scientists also confirmed that the probe remained on its original path.

According to Dr. Spilker, mission control in California reacted to the good news with a lot of high fives, tears and sighs of relief.

Voyager 2 launched to space on Aug. 20, 1977, to fly by the solar system’s outer planets and then explore the interstellar space that lies beyond it. The nearly 46-year-old probe is currently more than 12.5 billion miles away from Earth and is collecting data on the distant region of space for scientists to study. Its twin, Voyager 1, was launched weeks after Voyager 2 and became the first to cross the solar system’s boundary.

Had it not established contact, the mission team would have had to wait until Oct. 15, when Voyager 2 is programmed to do an automatic reset of the direction of its antenna.

But it no longer needs to wait, and the mission has resumed data transmissions from beyond the solar system’s heliosphere.

“We did an assessment and the spacecraft looks very healthy, very normal,” Ms. Dodd said. The mission team will continue to run tests to fully understand the status of the spacecraft before resuming regular activity.

Ms. Dodd looks forward to celebrating the probe’s launch anniversary later this month. “Both of these spacecraft are truly remarkable in their longevity,” she said, referring to Voyager 2 and Voyager 1. “They’re like the spacecraft with nine lives.”

Katrina Miller is a science reporting fellow for The Times. She recently earned her Ph.D. in particle physics from the University of Chicago. More about Katrina Miller

What’s Up in Space and Astronomy

Keep track of things going on in our solar system and all around the universe..

Never miss an eclipse, a meteor shower, a rocket launch or any other 2024 event  that’s out of this world with  our space and astronomy calendar .

Scientists may have discovered a major flaw in their understanding of dark energy, a mysterious cosmic force . That could be good news for the fate of the universe.

A new set of computer simulations, which take into account the effects of stars moving past our solar system, has effectively made it harder to predict Earth’s future and reconstruct its past.

Dante Lauretta, the planetary scientist who led the OSIRIS-REx mission to retrieve a handful of space dust , discusses his next final frontier.

A nova named T Coronae Borealis lit up the night about 80 years ago. Astronomers say it’s expected to put on another show  in the coming months.

Is Pluto a planet? And what is a planet, anyway? Test your knowledge here .

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

Colorado River

NASA-Led Study Provides New Global Accounting of Earth’s Rivers

NASA’s Hubble Pauses Science Due to Gyro Issue

NASA’s Hubble Pauses Science Due to Gyro Issue

NASA’s Psyche spacecraft is shown in a clean room

NASA’s Optical Comms Demo Transmits Data Over 140 Million Miles

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

Correction and Clarification of C.26 Rapid Mission Design Studies for Mars Sample Return

Correction and Clarification of C.26 Rapid Mission Design Studies for Mars Sample Return

NASA’s Boeing Crew Flight Test astronauts Butch Wilmore and Suni Williams prepare for their mission in the company’s Starliner spacecraft simulator at the agency’s Johnson Space Center in Houston.

NASA’s Commercial Partners Deliver Cargo, Crew for Station Science

voyager 2 recent news

NASA Shares Lessons of Human Systems Integration with Industry

Most mountains on the Earth are formed as plates collide and the crust buckles. Not so for the Moon, where mountains are formed as a result of impacts as seen by NASA Lunar Reconnaissance Orbiter.

Work Underway on Large Cargo Landers for NASA’s Artemis Moon Missions

three men standing beside a small, black piece of space satellite hardware

NASA’s ORCA, AirHARP Projects Paved Way for PACE to Reach Space

Amendment 11: Physical Oceanography not solicited in ROSES-2024

Amendment 11: Physical Oceanography not solicited in ROSES-2024

Why is Methane Seeping on Mars? NASA Scientists Have New Ideas

Why is Methane Seeping on Mars? NASA Scientists Have New Ideas

Mars Science Laboratory: Curiosity Rover

Mars Science Laboratory: Curiosity Rover

Hubble Spots a Magnificent Barred Galaxy

Hubble Spots a Magnificent Barred Galaxy

The Crab Nebula, the result of a bright supernova explosion seen by Chinese and other astronomers in the year 1054, is 6,500 light-years from Earth. At its center is a neutron star, a super-dense star produced by the supernova. As it rotates at about 30 times per second, its beam of radiation passes over the Earth every orbit, like a cosmic lighthouse. As the young pulsar slows down, large amounts of energy are injected into its surroundings. In particular, a high-speed wind of matter and anti-matter particles plows into the surrounding nebula, creating a shock wave that forms the expanding ring seen in the movie. Jets from the poles of the pulsar spew X-ray emitting matter and antimatter particles in a direction perpendicular to the ring. This image show the X-ray data from Chandra along with infrared data from the Webb space telescope.

NASA’s Chandra Releases Doubleheader of Blockbuster Hits

Explore the Universe with the First E-Book from NASA’s Fermi

Explore the Universe with the First E-Book from NASA’s Fermi

Julia Chavez

NASA Grant Brings Students at Underserved Institutions to the Stars

A person stands next to a small jet engine inside a soundproofed room.

NASA Uses Small Engine to Enhance Sustainable Jet Research

Inside of an aircraft cockpit is shown from the upside down perspective with two men in tan flight suits sitting inside. The side of one helmet, oxygen mask and visor is seen for one of the two men as well as controls inside the aircraft. The second helmet is seen from the back as the man sitting in the front is piloting the aircraft. You can see land below through the window of the aircraft. 

NASA Photographer Honored for Thrilling Inverted In-Flight Image

voyager 2 recent news

NASA’s Ingenuity Mars Helicopter Team Says Goodbye … for Now

Swimming in water, A beaver family nibbles on aspen branches in Spawn Creek, Utah.

NASA Data Helps Beavers Build Back Streams

The PACE spacecraft sending data down over radio frequency links to an antenna on Earth. The science images shown are real photos from the PACE mission.

NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’

voyager 2 recent news

Washington State High Schooler Wins 2024 NASA Student Art Contest

voyager 2 recent news

NASA STEM Artemis Moon Trees

voyager 2 recent news

Kiyun Kim: From Intern to Accessibility Advocate

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

Nasa’s voyager 2 probe enters interstellar space.

The headshot image of NASA

For the second time in history, a human-made object has reached the space between the stars. NASA’s Voyager 2 probe now has exited the heliosphere – the protective bubble of particles and magnetic fields created by the Sun.

Members of NASA’s Voyager team will discuss the findings at a news conference at 11 a.m. EST (8 a.m. PST) today at the meeting of the American Geophysical Union (AGU) in Washington. The news conference will stream live on the agency’s website .

Comparing data from different instruments aboard the trailblazing spacecraft, mission scientists determined the probe crossed the outer edge of the heliosphere on Nov. 5. This boundary, called the heliopause, is where the tenuous, hot solar wind meets the cold, dense interstellar medium. Its twin, Voyager 1 , crossed this boundary in 2012, but Voyager 2 carries a working instrument that will provide first-of-its-kind observations of the nature of this gateway into interstellar space.

Voyager 2 now is slightly more than 11 billion miles (18 billion kilometers) from Earth. Mission operators still can communicate with Voyager 2 as it enters this new phase of its journey, but information – moving at the speed of light – takes about 16.5 hours to travel from the spacecraft to Earth. By comparison, light traveling from the Sun takes about eight minutes to reach Earth.

The most compelling evidence of Voyager 2’s exit from the heliosphere came from its onboard Plasma Science Experiment ( PLS ), an instrument that stopped working on Voyager 1 in 1980, long before that probe crossed the heliopause. Until recently, the space surrounding Voyager 2 was filled predominantly with plasma flowing out from our Sun. This outflow, called the solar wind, creates a bubble – the heliosphere – that envelopes the planets in our solar system. The PLS uses the electrical current of the plasma to detect the speed, density, temperature, pressure and flux of the solar wind. The PLS aboard Voyager 2 observed a steep decline in the speed of the solar wind particles on Nov. 5. Since that date, the plasma instrument has observed no solar wind flow in the environment around Voyager 2, which makes mission scientists confident the probe has left the heliosphere.

In addition to the plasma data, Voyager’s science team members have seen evidence from three other onboard instruments – the cosmic ray subsystem, the low energy charged particle instrument and the magnetometer – that is consistent with the conclusion that Voyager 2 has crossed the heliopause. Voyager’s team members are eager to continue to study the data from these other onboard instruments to get a clearer picture of the environment through which Voyager 2 is traveling.

Voyager 2's plasma science experiment (PLS)

“There is still a lot to learn about the region of interstellar space immediately beyond the heliopause,” said Ed Stone, Voyager project scientist based at Caltech in Pasadena, California. 

Together, the two Voyagers provide a detailed glimpse of how our heliosphere interacts with the constant interstellar wind flowing from beyond. Their observations complement data from NASA’s Interstellar Boundary Explorer ( IBEX ), a mission that is remotely sensing that boundary. NASA also is preparing an additional mission – the upcoming Interstellar Mapping and Acceleration Probe ( IMAP ), due to launch in 2024 – to capitalize on the Voyagers’ observations.

“Voyager has a very special place for us in our heliophysics fleet,” said Nicola Fox, director of the Heliophysics Division at NASA Headquarters. “Our studies start at the Sun and extend out to everything the solar wind touches. To have the Voyagers sending back information about the edge of the Sun’s influence gives us an unprecedented glimpse of truly uncharted territory.”

While the probes have left the heliosphere, Voyager 1 and Voyager 2 have not yet left the solar system, and won’t be leaving anytime soon. The boundary of the solar system is considered to be beyond the outer edge of the Oort Cloud , a collection of small objects that are still under the influence of the Sun’s gravity. The width of the Oort Cloud is not known precisely, but it is estimated to begin at about 1,000 astronomical units (AU) from the Sun and to extend to about 100,000 AU. One AU is the distance from the Sun to Earth. It will take about 300 years for Voyager 2 to reach the inner edge of the Oort Cloud and possibly 30,000 years to fly beyond it.

The Voyager probes are powered using heat from the decay of radioactive material, contained in a device called a radioisotope thermal generator ( RTG ). The power output of the RTGs diminishes by about four watts per year, which means that various parts of the Voyagers, including the cameras on both spacecraft, have been turned off over time to manage power.

“I think we’re all happy and relieved that the Voyager probes have both operated long enough to make it past this milestone,” said Suzanne Dodd, Voyager project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California. “This is what we’ve all been waiting for. Now we’re looking forward to what we’ll be able to learn from having both probes outside the heliopause.”

Voyager 2 launched in 1977, 16 days before Voyager 1, and both have traveled well beyond their original destinations. The spacecraft were built to last five years and conduct close-up studies of Jupiter and Saturn. However, as the mission continued, additional flybys of the two outermost giant planets, Uranus and Neptune, proved possible. As the spacecraft flew across the solar system, remote-control reprogramming was used to endow the Voyagers with greater capabilities than they possessed when they left Earth. Their two-planet mission became a four-planet mission. Their five-year lifespans have stretched to 41 years, making Voyager 2 NASA’s longest running mission.

The Voyager story has impacted not only generations of current and future scientists and engineers, but also Earth’s culture, including film, art and music. Each spacecraft carries a Golden Record of Earth sounds, pictures and messages. Since the spacecraft could last billions of years, these circular time capsules could one day be the only traces of human civilization.

Voyager’s mission controllers communicate with the probes using NASA’s Deep Space Network ( DSN ), a global system for communicating with interplanetary spacecraft. The DSN consists of three clusters of antennas in Goldstone, California; Madrid, Spain; and Canberra, Australia.

The Voyager Interstellar Mission is a part of NASA’s Heliophysics System Observatory, sponsored by the Heliophysics Division of NASA’s Science Mission Directorate in Washington. JPL built and operates the twin Voyager spacecraft. NASA’s DSN, managed by JPL, is an international network of antennas that supports interplanetary spacecraft missions and radio and radar astronomy observations for the exploration of the solar system and the universe. The network also supports selected Earth-orbiting missions. The Commonwealth Scientific and Industrial Research Organisation, Australia’s national science agency, operates both the Canberra Deep Space Communication Complex, part of the DSN, and the Parkes Observatory, which NASA has been using to downlink data from Voyager 2 since Nov. 8.

For more information about the Voyager mission, visit:

More information about NASA’s Heliophysics missions is available online at:

Dwayne Brown / Karen Fox Headquarters, Washington 202-358-1726 / 301-286-6284 [email protected] / [email protected] Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 [email protected]

  • Election 2024
  • Entertainment
  • Newsletters
  • Photography
  • Personal Finance
  • AP Investigations
  • AP Buyline Personal Finance
  • AP Buyline Shopping
  • Press Releases
  • Israel-Hamas War
  • Russia-Ukraine War
  • Global elections
  • Asia Pacific
  • Latin America
  • Middle East
  • Election Results
  • Delegate Tracker
  • AP & Elections
  • Auto Racing
  • 2024 Paris Olympic Games
  • Movie reviews
  • Book reviews
  • Personal finance
  • Financial Markets
  • Business Highlights
  • Financial wellness
  • Artificial Intelligence
  • Social Media

NASA hears signal from Voyager 2 spacecraft after mistakenly cutting contact

FILE - In this Aug. 4, 1977, photo provided by NASA, the "Sounds of Earth" record is mounted on the Voyager 2 spacecraft in the Safe-1 Building at the Kennedy Space Center, Fla. On Wednesday, Aug. 2, 2023, NASA's Deep Space Network sent a command to correct a problem with its antenna. It took more than 18 hours for the signal to reach Voyager 2 _ more than 12 billion miles away _ and another 18 hours to hear back. On Friday, Aug. 4, the spacecraft started returning data again. (AP Photo/NASA, File)

FILE - In this Aug. 4, 1977, photo provided by NASA, the “Sounds of Earth” record is mounted on the Voyager 2 spacecraft in the Safe-1 Building at the Kennedy Space Center, Fla. On Wednesday, Aug. 2, 2023, NASA’s Deep Space Network sent a command to correct a problem with its antenna. It took more than 18 hours for the signal to reach Voyager 2 _ more than 12 billion miles away _ and another 18 hours to hear back. On Friday, Aug. 4, the spacecraft started returning data again. (AP Photo/NASA, File)

  • Copy Link copied

CAPE CANAVERAL, Fla. (AP) — After days of silence, NASA has heard from Voyager 2 in interstellar space billions of miles away.

Flight controllers accidentally sent a wrong command nearly two weeks ago that tilted the spacecraft’s antenna away from Earth and severed contact.

NASA’s Deep Space Network , giant radio antennas across the globe, picked up a “heartbeat signal,” meaning the 46-year-old craft is alive and operating, project manager Suzanne Dodd said in an email Tuesday.

The news “buoyed our spirits,” Dodd said. Flight controllers at the Jet Propulsion Laboratory in California will now try to turn Voyager 2’s antenna back toward Earth.

If the command doesn’t work — and controllers doubt it will — they’ll have to wait until October for an automatic spacecraft reset. The antenna is only 2% off-kilter.

“That is a long time to wait, so we’ll try sending up commands several times” before then, Dodd said.

Voyager 2 rocketed into space in 1977, along with its identical twin Voyager 1, on a quest to explore the outer planets.

Still communicating and working fine, Voyager 1 is now 15 billion miles (24 billion kilometers) from Earth, making it the most distant spacecraft.

This illustration provided by NASA depicts Voyager 1. The most distant spacecraft from Earth stopped sending back understandable data in November 2023. Flight controllers traced the blank communication to a bad computer chip and rearranged the spacecraft’s coding to work around the trouble. In mid-April 2024, NASA’s Jet Propulsion Laboratory declared success after receiving good engineering updates. The team is still working to restore transmission of the science data. (NASA via AP)

Voyager 2 trails its twin in interstellar space at more than 12 billion miles (19 billion kilometers) from Earth. At that distance, it takes more than 18 hours for a signal to travel one way.

The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute’s Science and Educational Media Group. The AP is solely responsible for all content.

voyager 2 recent news

voyager 2 recent news

Voyager 1 is sending data back to Earth for the first time in 5 months

Sign up for CNN’s Wonder Theory science newsletter.  Explore the universe with news on fascinating discoveries, scientific advancements and more .

For the first time in five months, NASA engineers have received decipherable data from Voyager 1 after crafting a creative solution to fix a communication problem aboard humanity’s most distant spacecraft in the cosmos.

Voyager 1 is currently about 15 billion miles (24 billion kilometers) away, and at 46 years old, the probe has shown multiple quirks and signs of aging in recent years.

The latest issue experienced by Voyager 1 first cropped up in November 2023, when the flight data system’s telemetry modulation unit began sending an indecipherable repeating pattern of code .

Voyager 1’s flight data system collects information from the spacecraft’s science instruments and bundles it with engineering data that reflects its current health status. Mission control on Earth receives that data in binary code, or a series of ones and zeroes.

But since November, Voyager 1’s flight data system had been stuck in a loop. While the probe has continued to relay a steady radio signal to its mission control team on Earth over the past few months, the signal did not carry any usable data.

The mission team received the first coherent data about the health and status of Voyager 1’s engineering systems on April 20. While the team is still reviewing the information, everything they’ve seen so far suggests Voyager 1 is healthy and operating properly.

“Today was a great day for Voyager 1,” said Linda Spilker, Voyager project scientist at JPL, in a statement Saturday. “We’re back in communication with the spacecraft. And we look forward to getting science data back.”

The breakthrough came as the result of a clever bit of trial and error and the unraveling of a mystery that led the team to a single chip.

Troubleshooting from billions of miles away

After discovering the issue, the mission team attempted sending commands to restart the spacecraft’s computer system and learn more about the underlying cause of the problem.

The team sent a command called a “poke” to Voyager 1 on March 1 to get the flight data system to run different software sequences in the hopes of finding out what was causing the glitch.

On March 3, the team noticed that activity from one part of the flight data system stood out from the rest of the garbled data. While the signal wasn’t in the format the Voyager team is used to seeing when the flight data system is functioning as expected, an engineer with NASA’s Deep Space Network was able to decode it.

The Deep Space Network is a system of radio antennae on Earth that help the agency communicate with the Voyager probes and other spacecraft exploring our solar system.

The decoded signal included a readout of the entire flight data system’s memory.

By investigating the readout, the team determined the cause of the issue: 3% of the flight data system’s memory is corrupted . A single chip responsible for storing part of the system’s memory, including some of the computer’s software code, isn’t working properly. While the cause of the chip’s failure is unknown, it could be worn out or may have been hit by an energetic particle from space, the team said.

The loss of the code on the chip caused Voyager 1’s science and engineering data to be unusable.

Since there was no way to repair the chip, the team opted to store the affected code from the chip elsewhere in the system’s memory. While they couldn’t pinpoint a location large enough to hold all of the code, they were able to divide the code into sections and store it in different spots within the flight data system.

“To make this plan work, they also needed to adjust those code sections to ensure, for example, that they all still function as a whole,” according to an update from NASA . “Any references to the location of that code in other parts of the (flight data system) memory needed to be updated as well.”

After determining the code necessary for packaging Voyager 1’s engineering data, engineers sent a radio signal to the probe commanding the code to a new location in the system’s memory on April 18.

Given Voyager 1’s immense distance from Earth, it takes a radio signal about 22.5 hours to reach the probe, and another 22.5 hours for a response signal from the spacecraft to reach Earth.

On April 20, the team received Voyager 1’s response indicating that the clever code modification had worked, and they could finally receive readable engineering data from the probe once more.

Exploring interstellar space

Within the coming weeks, the team will continue to relocate other affected parts of the system’s software, including those responsible for returning the valuable science data Voyager 1 is collecting.

Initially designed to last five years, the Voyager 1 and its twin, Voyager 2, launched in 1977 and are the longest operating spacecraft in history. Their exceptionally long life spans mean that both spacecraft have provided additional insights about our solar system and beyond after achieving their preliminary goals of flying by Jupiter, Saturn, Uranus and Neptune decades ago.

The probes are currently venturing through uncharted cosmic territory along the outer reaches of the solar system. Both are in interstellar space and are the only spacecraft ever to operate beyond the heliosphere, the sun’s bubble of magnetic fields and particles that extends well beyond the orbit of Pluto.

Voyager 2, which is operating normally, has traveled more than 12.6 billion miles (20.3 billion kilometers) from our planet.

Over time, both spacecraft have encountered unexpected issues and dropouts, including a seven-month period in 2020 when Voyager 2 couldn’t communicate with Earth. In August 2023, the mission team used a long-shot “shout” technique to restore communications with Voyager 2 after a command inadvertently oriented the spacecraft’s antenna in the wrong direction.

The team estimates it’s a few weeks away from receiving science data from Voyager 1 and looks forward to seeing what that data contains.

“We never know for sure what’s going to happen with the Voyagers, but it constantly amazes me when they just keep going,” said Voyager Project Manager Suzanne Dodd, in a statement. “We’ve had many anomalies, and they are getting harder. But we’ve been fortunate so far to recover from them. And the mission keeps going. And younger engineers are coming onto the Voyager team and contributing their knowledge to keep the mission going.”

For more CNN news and newsletters create an account at CNN.com

Members of the Voyager flight team celebrate after receiving the first coherent data from Voyager 1 in five months at NASA's Jet Propulsion Laboratory on April 20. - NASA/JPL-Caltech

  • International edition
  • Australia edition
  • Europe edition

Nasa depiction of Voyager 1 operating in space

Voyager 1 transmitting data again after Nasa remotely fixes 46-year-old probe

Engineers spent months working to repair link with Earth’s most distant spacecraft, says space agency

Earth’s most distant spacecraft, Voyager 1, has started communicating properly again with Nasa after engineers worked for months to remotely fix the 46-year-old probe.

Nasa’s Jet Propulsion Laboratory (JPL), which makes and operates the agency’s robotic spacecraft, said in December that the probe – more than 15bn miles (24bn kilometres) away – was sending gibberish code back to Earth.

In an update released on Monday , JPL announced the mission team had managed “after some inventive sleuthing” to receive usable data about the health and status of Voyager 1’s engineering systems. “The next step is to enable the spacecraft to begin returning science data again,” JPL said. Despite the fault, Voyager 1 had operated normally throughout, it added.

Launched in 1977, Voyager 1 was designed with the primary goal of conducting close-up studies of Jupiter and Saturn in a five-year mission. However, its journey continued and the spacecraft is now approaching a half-century in operation.

Voyager 1 crossed into interstellar space in August 2012, making it the first human-made object to venture out of the solar system. It is currently travelling at 37,800mph (60,821km/h).

Hi, it's me. - V1 https://t.co/jgGFBfxIOe — NASA Voyager (@NASAVoyager) April 22, 2024

The recent problem was related to one of the spacecraft’s three onboard computers, which are responsible for packaging the science and engineering data before it is sent to Earth. Unable to repair a broken chip, the JPL team decided to move the corrupted code elsewhere, a tricky job considering the old technology.

The computers on Voyager 1 and its sister probe, Voyager 2, have less than 70 kilobytes of memory in total – the equivalent of a low-resolution computer image. They use old-fashioned digital tape to record data.

The fix was transmitted from Earth on 18 April but it took two days to assess if it had been successful as a radio signal takes about 22 and a half hours to reach Voyager 1 and another 22 and a half hours for a response to come back to Earth. “When the mission flight team heard back from the spacecraft on 20 April, they saw that the modification worked,” JPL said.

Alongside its announcement, JPL posted a photo of members of the Voyager flight team cheering and clapping in a conference room after receiving usable data again, with laptops, notebooks and doughnuts on the table in front of them.

The Retired Canadian astronaut Chris Hadfield, who flew two space shuttle missions and acted as commander of the International Space Station, compared the JPL mission to long-distance maintenance on a vintage car.

“Imagine a computer chip fails in your 1977 vehicle. Now imagine it’s in interstellar space, 15bn miles away,” Hadfield wrote on X . “Nasa’s Voyager probe just got fixed by this team of brilliant software mechanics.

Voyager 1 and 2 have made numerous scientific discoveries , including taking detailed recordings of Saturn and revealing that Jupiter also has rings, as well as active volcanism on one of its moons, Io. The probes later discovered 23 new moons around the outer planets.

As their trajectory takes them so far from the sun, the Voyager probes are unable to use solar panels, instead converting the heat produced from the natural radioactive decay of plutonium into electricity to power the spacecraft’s systems.

Nasa hopes to continue to collect data from the two Voyager spacecraft for several more years but engineers expect the probes will be too far out of range to communicate in about a decade, depending on how much power they can generate. Voyager 2 is slightly behind its twin and is moving slightly slower.

In roughly 40,000 years, the probes will pass relatively close, in astronomical terms, to two stars. Voyager 1 will come within 1.7 light years of a star in the constellation Ursa Minor, while Voyager 2 will come within a similar distance of a star called Ross 248 in the constellation of Andromeda.

More on this story

voyager 2 recent news

Cosmic cleaners: the scientists scouring English cathedral roofs for space dust

voyager 2 recent news

Russia acknowledges continuing air leak from its segment of space station

voyager 2 recent news

Uncontrolled European satellite falls to Earth after 30 years in orbit

voyager 2 recent news

Cosmonaut Oleg Kononenko sets world record for most time spent in space

voyager 2 recent news

‘Old smokers’: astronomers discover giant ancient stars in Milky Way

voyager 2 recent news

Nasa postpones plans to send humans to moon

voyager 2 recent news

What happened to the Peregrine lander and what does it mean for moon missions?

voyager 2 recent news

Peregrine 1 has ‘no chance’ of landing on moon due to fuel leak

Most viewed.

  • Skip to main content
  • Keyboard shortcuts for audio player

Well, hello, Voyager 1! The venerable spacecraft is once again making sense

Nell Greenfieldboyce 2010

Nell Greenfieldboyce

voyager 2 recent news

Members of the Voyager team celebrate at NASA's Jet Propulsion Laboratory after receiving data about the health and status of Voyager 1 for the first time in months. NASA/JPL-Caltech hide caption

Members of the Voyager team celebrate at NASA's Jet Propulsion Laboratory after receiving data about the health and status of Voyager 1 for the first time in months.

NASA says it is once again able to get meaningful information back from the Voyager 1 probe, after months of troubleshooting a glitch that had this venerable spacecraft sending home messages that made no sense.

The Voyager 1 and Voyager 2 probes launched in 1977 on a mission to study Jupiter and Saturn but continued onward through the outer reaches of the solar system. In 2012, Voyager 1 became the first spacecraft to enter interstellar space, the previously unexplored region between the stars. (Its twin, traveling in a different direction, followed suit six years later.)

Voyager 1 had been faithfully sending back readings about this mysterious new environment for years — until November, when its messages suddenly became incoherent .

NASA's Voyager 1 spacecraft is talking nonsense. Its friends on Earth are worried

NASA's Voyager 1 spacecraft is talking nonsense. Its friends on Earth are worried

It was a serious problem that had longtime Voyager scientists worried that this historic space mission wouldn't be able to recover. They'd hoped to be able to get precious readings from the spacecraft for at least a few more years, until its power ran out and its very last science instrument quit working.

For the last five months, a small team at NASA's Jet Propulsion Laboratory in California has been working to fix it. The team finally pinpointed the problem to a memory chip and figured out how to restore some essential software code.

"When the mission flight team heard back from the spacecraft on April 20, they saw that the modification worked: For the first time in five months, they have been able to check the health and status of the spacecraft," NASA stated in an update.

The usable data being returned so far concerns the workings of the spacecraft's engineering systems. In the coming weeks, the team will do more of this software repair work so that Voyager 1 will also be able to send science data, letting researchers once again see what the probe encounters as it journeys through interstellar space.

After a 12.3 billion-mile 'shout,' NASA regains full contact with Voyager 2

After a 12.3 billion-mile 'shout,' NASA regains full contact with Voyager 2

  • interstellar mission

NASA's Voyager 1 spacecraft finally phones home after 5 months of no contact

On Saturday, April 5, Voyager 1 finally "phoned home" and updated its NASA operating team about its health.

An illustration of a spacecraft with a white disk in space.

NASA's interstellar explorer Voyager 1 is finally communicating with ground control in an understandable way again. On Saturday (April 20), Voyager 1 updated ground control about its health status for the first time in 5 months. While the Voyager 1 spacecraft still isn't sending valid science data back to Earth, it is now returning usable information about the health and operating status of its onboard engineering systems. 

Thirty-five years after its launch in 1977, Voyager 1 became the first human-made object to leave the solar system and enter interstellar space . It was followed out of our cosmic quarters by its space-faring sibling, Voyager 2 , six years later in 2018. Voyager 2, thankfully, is still operational and communicating well with Earth. 

The two spacecraft remain the only human-made objects exploring space beyond the influence of the sun. However, on Nov. 14, 2023, after 11 years of exploring interstellar space and while sitting a staggering 15 billion miles (24 billion kilometers) from Earth, Voyager 1's binary code — computer language composed of 0s and 1s that it uses to communicate with its flight team at NASA — stopped making sense.

Related: We finally know why NASA's Voyager 1 spacecraft stopped communicating — scientists are working on a fix

In March, NASA's Voyager 1 operating team sent a digital "poke" to the spacecraft, prompting its flight data subsystem (FDS) to send a full memory readout back home.

This memory dump revealed to scientists and engineers that the "glitch" is the result of a corrupted code contained on a single chip representing around 3% of the FDS memory. The loss of this code rendered Voyager 1's science and engineering data unusable.

People, many of whom are wearing matching blue shirts, celebrating at a conference table.

The NASA team can't physically repair or replace this chip, of course, but what they can do is remotely place the affected code elsewhere in the FDS memory. Though no single section of the memory is large enough to hold this code entirely, the team can slice it into sections and store these chunks separately. To do this, they will also have to adjust the relevant storage sections to ensure the addition of this corrupted code won't cause those areas to stop operating individually, or working together as a whole. In addition to this, NASA staff will also have to ensure any references to the corrupted code's location are updated.

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

—  Voyager 2: An iconic spacecraft that's still exploring 45 years on

—  NASA's interstellar Voyager probes get software updates beamed from 12 billion miles away

—  NASA Voyager 2 spacecraft extends its interstellar science mission for 3 more years

On April 18, 2024, the team began sending the code to its new location in the FDS memory. This was a painstaking process, as a radio signal takes 22.5 hours to traverse the distance between Earth and Voyager 1, and it then takes another 22.5 hours to get a signal back from the craft. 

By Saturday (April 20), however, the team confirmed their modification had worked. For the first time in five months, the scientists were able to communicate with Voyager 1 and check its health. Over the next few weeks, the team will work on adjusting the rest of the FDS software and aim to recover the regions of the system that are responsible for packaging and returning vital science data from beyond the limits of the solar system.

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Robert Lea

Robert Lea is a science journalist in the U.K. whose articles have been published in Physics World, New Scientist, Astronomy Magazine, All About Space, Newsweek and ZME Science. He also writes about science communication for Elsevier and the European Journal of Physics. Rob holds a bachelor of science degree in physics and astronomy from the U.K.’s Open University. Follow him on Twitter @sciencef1rst.

Hubble Space Telescope pauses science due to gyroscope issue

Mars exploration, new rockets and more: Interview with ESA chief Josef Aschbacher

Private moon lander will carry Nokia's 4G cell network to the lunar surface this year

  • Robb62 'V'ger must contact the creator. Reply
  • Holy HannaH! Couldn't help but think that "repair" sounded extremely similar to the mechanics of DNA and the evolution of life. Reply
  • Torbjorn Larsson *Applause* indeed, thanks to the Voyager teams for the hard work! Reply
  • SpaceSpinner I notice that the article says that it has been in space for 35 years. Either I have gone back in time 10 years, or their AI is off by 10 years. V-*ger has been captured! Reply
Admin said: On Saturday, April 5, Voyager 1 finally "phoned home" and updated its NASA operating team about its health. The interstellar explorer is back in touch after five months of sending back nonsense data. NASA's Voyager 1 spacecraft finally phones home after 5 months of no contact : Read more
evw said: I'm incredibly grateful for the persistence and dedication of the Voyagers' teams and for the amazing accomplishments that have kept these two spacecrafts operational so many years beyond their expected lifetimes. V-1 was launched when I was 25 years young; I was nearly delirious with joy. Exploring the physical universe captivated my attention while I was in elementary school and has kept me mesmerized since. I'm very emotional writing this note, thinking about what amounts to a miracle of technology and longevity in my eyes. BRAVO!!! THANK YOU EVERYONE PAST & PRESENT!!!
  • EBairead I presume it's Fortran. Well done all. Reply
SpaceSpinner said: I notice that the article says that it has been in space for 35 years. Either I have gone back in time 10 years, or their AI is off by 10 years. V-*ger has been captured!
EBairead said: I presume it's Fortran. Well done all.
  • View All 13 Comments

Most Popular

  • 2 'Cat nights' are here as Leo, Leo minor, and Lynx constellations prowl the evening sky
  • 3 Highly precise atomic clocks could soon get even better. Here's how
  • 4 Mars exploration, new rockets and more: Interview with ESA chief Josef Aschbacher
  • 5 Everything we know about James Gunn's Superman

voyager 2 recent news

share this!

April 22, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

NASA's Voyager 1 resumes sending engineering updates to Earth

NASA’s Voyager 1 resumes sending engineering updates to Earth

For the first time since November, NASA's Voyager 1 spacecraft is returning usable data about the health and status of its onboard engineering systems. The next step is to enable the spacecraft to begin returning science data again. The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars).

Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the spacecraft was still receiving their commands and otherwise operating normally. In March, the Voyager engineering team at NASA's Jet Propulsion Laboratory in Southern California confirmed that the issue was tied to one of the spacecraft's three onboard computers, called the flight data subsystem (FDS). The FDS is responsible for packaging the science and engineering data before it's sent to Earth.

The team discovered that a single chip responsible for storing a portion of the FDS memory—including some of the FDS computer's software code—isn't working. The loss of that code rendered the science and engineering data unusable. Unable to repair the chip, the team decided to place the affected code elsewhere in the FDS memory. But no single location is large enough to hold the section of code in its entirety.

So they devised a plan to divide the affected code into sections and store those sections in different places in the FDS. To make this plan work, they also needed to adjust those code sections to ensure, for example, that they all still function as a whole. Any references to the location of that code in other parts of the FDS memory needed to be updated as well.

NASA’s Voyager 1 resumes sending engineering updates to Earth

The team started by singling out the code responsible for packaging the spacecraft's engineering data. They sent it to its new location in the FDS memory on April 18. A radio signal takes about 22.5 hours to reach Voyager 1, which is over 15 billion miles (24 billion kilometers) from Earth, and another 22.5 hours for a signal to come back to Earth. When the mission flight team heard back from the spacecraft on April 20, they saw that the modification had worked: For the first time in five months, they were able to check the health and status of the spacecraft.

During the coming weeks, the team will relocate and adjust the other affected portions of the FDS software. These include the portions that will start returning science data.

Voyager 2 continues to operate normally. Launched over 46 years ago, the twin Voyager spacecraft are the longest-running and most distant spacecraft in history. Before the start of their interstellar exploration, both probes flew by Saturn and Jupiter, and Voyager 2 flew by Uranus and Neptune.

Provided by NASA

Explore further

Feedback to editors

voyager 2 recent news

Researchers achieve electrosynthesis via superwetting organic-solid-water interfaces

2 minutes ago

voyager 2 recent news

Scientists' research on RNA editing illuminates possible lifesaving treatments for genetic diseases

4 minutes ago

voyager 2 recent news

Scientists construct sophisticated synthetic system using self-replicating nanostructures

10 minutes ago

voyager 2 recent news

Study reveals cancer vulnerabilities in popular dog breeds

12 minutes ago

voyager 2 recent news

Aggressive wall lizard provides clues to understanding evolution

14 minutes ago

voyager 2 recent news

Study sheds light on the diversity of carnivore skull shapes and their function

22 minutes ago

voyager 2 recent news

Mammals on 'sky islands' may be threatened by climate change, human development

25 minutes ago

voyager 2 recent news

Prehistoric Irish monuments may have been pathways for the dead

34 minutes ago

voyager 2 recent news

New study reveals mystery of decaying exoplanet orbits

39 minutes ago

voyager 2 recent news

More than 2 million gazelle still roam the Mongolian steppe

Relevant physicsforums posts, documenting the setup of my new telescope.

12 hours ago

Quasi-Moons

Apr 28, 2024

Need help simplifying standard error formula for redshift

Apr 27, 2024

Our Beautiful Universe - Photos and Videos

Apr 25, 2024

Solar Activity and Space Weather Update thread

'devil' comet visible tonight 21.04.24.

More from Astronomy and Astrophysics

Related Stories

voyager 2 recent news

Engineers working to resolve issue with Voyager 1 computer

Dec 13, 2023

voyager 2 recent news

NASA hears signal from Voyager 2 spacecraft after mistakenly cutting contact

Aug 1, 2023

voyager 2 recent news

NASA listens for Voyager 2 spacecraft after wrong command cuts contact

Jul 31, 2023

voyager 2 recent news

NASA's Voyager team focuses on software patch, thrusters

Oct 20, 2023

voyager 2 recent news

NASA's Voyager will do more science with new power strategy

Apr 27, 2023

voyager 2 recent news

Engineers investigating NASA's Voyager 1 telemetry data

May 18, 2022

Recommended for you

voyager 2 recent news

Japan's moon lander wasn't built to survive a weekslong lunar night. It's still going after 3

Apr 24, 2024

voyager 2 recent news

Simulated microgravity affects sleep and physiological rhythms, study finds

Apr 22, 2024

voyager 2 recent news

'Tube map' around planets and moons made possible by knot theory

Apr 17, 2024

voyager 2 recent news

NASA's Ingenuity Mars helicopter team says goodbye—for now

voyager 2 recent news

NASA confirms mystery object that crashed through roof of Florida home came from space station

Apr 16, 2024

voyager 2 recent news

NASA is seeking a faster, cheaper way to bring Mars samples to Earth

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

Voyager, NASA’s Longest-Lived Mission, Logs 45 Years in Space

This archival photo shows engineers working on NASA's Voyager 2 spacecraft on March 23, 1977.

This archival image taken at NASA’s Jet Propulsion Laboratory on March 23, 1977, shows engineers preparing the Voyager 2 spacecraft ahead of its launch later that year.

Launched in 1977, the twin Voyager probes are NASA’s longest-operating mission and the only spacecraft ever to explore interstellar space.

NASA’s twin Voyager probes have become, in some ways, time capsules of their era: They each carry an eight-track tape player for recording data, they have about 3 million times less memory than modern cellphones, and they transmit data about 38,000 times slower than a 5G internet connection.

Yet the Voyagers remain on the cutting edge of space exploration. Managed and operated by NASA’s Jet Propulsion Laboratory in Southern California, they are the only probes to ever explore interstellar space – the galactic ocean that our Sun and its planets travel through.

The Sun and the planets reside in the heliosphere, a protective bubble created by the Sun’s magnetic field and the outward flow of solar wind (charged particles from the Sun). Researchers – some of them younger than the two distant spacecraft – are combining Voyager’s observations with data from newer missions to get a more complete picture of our Sun and how the heliosphere interacts with interstellar space.

NASA’s Solar System Interactive lets users see where the Voyagers are right now relative to the planets, the Sun, and other spacecraft. View it yourself here . Credit: NASA/JPL-Caltech

“The heliophysics mission fleet provides invaluable insights into our Sun, from understanding the corona or the outermost part of the Sun’s atmosphere, to examining the Sun’s impacts throughout the solar system, including here on Earth, in our atmosphere, and on into interstellar space,” said Nicola Fox, director of the Heliophysics Division at NASA Headquarters in Washington. “Over the last 45 years, the Voyager missions have been integral in providing this knowledge and have helped change our understanding of the Sun and its influence in ways no other spacecraft can.”

The Voyagers are also ambassadors, each carrying a golden record containing images of life on Earth, diagrams of basic scientific principles, and audio that includes sounds from nature, greetings in multiple languages, and music. The gold-coated records serve as a cosmic “message in a bottle” for anyone who might encounter the space probes. At the rate gold decays in space and is eroded by cosmic radiation, the records will last more than a billion years.

45 Years of Voyager I and II

Launched in 1977, NASA’s twin Voyager spacecraft inspired the world with pioneering visits to Jupiter, Saturn, Uranus, and Neptune. Their journey continues 45 years later as both probes explore interstellar space, the region outside the protective heliosphere created by our Sun. Researchers – some younger than the spacecraft – are now using Voyager data to solve mysteries of our solar system and beyond.

voyager 2 recent news

This archival photo shows engineers working on vibration acoustics and pyro shock testing of NASA’s Voyager on Nov. 18, 1976. Credit: NASA/JPL-Caltech

This image highlights the special cargo onboard NASA's Voyager spacecraft: the Golden Record. Each of the two Voyager spacecraft launched in 1977 carry a 12-inch gold-plated phonograph record with images and sounds from Earth.

NASA’s Voyager 1 acquired this image of a volcanic explosion on Io on March 4, 1979, about 11 hours before the spacecraft’s closest approach to the moon of Jupiter.

This approximate natural-color image from NASA's Voyager 2 shows Saturn, its rings, and four of its icy satellites. Three satellites Tethys, Dione, and Rhea are visible against the darkness of space.

Neptune’s green-blue atmosphere was shown in greater detail than ever before in this image from NASA’s Voyager 2 as the spacecraft rapidly approached its encounter with the giant planet in August 1989.

This is an image of the planet Uranus taken by the spacecraft Voyager 2 in 1986.

This updated version of the iconic "Pale Blue Dot" image taken by the Voyager 1 spacecraft uses modern image-processing software and techniques to revisit the well-known Voyager view while attempting to respect the original data and intent of those who planned the images.

Voyager 1 has entered interstellar space. NASA's spacecraft, which rose from Earth on a September morning 36 years ago, has traveled farther than anyone, or anything, in history.

This illustrated graphic was made to mark Voyager 1’s entry into interstellar space in 2012. It puts solar system distances in perspective, with the scale bar in astronomical units and each set distance beyond 1 AU (the average distance between the Sun and Earth) representing 10 times the previous distance.

Voyager Mission Timeline

This graphic highlights some of the Voyager mission’s key accomplishments. Credit: NASA/JPL-Caltech Full image details

Voyager 2: By the Numbers

This graphic provides some of the mission’s key statistics from 2018, when NASA’s Voyager 2 probe exited the heliosphere. Credit: NASA/JPL-Caltech Full image details

Beyond Expectations

Voyager 2 launched on Aug. 20, 1977, quickly followed by Voyager 1 on Sept. 5. Both probes traveled to Jupiter and Saturn, with Voyager 1 moving faster and reaching them first. Together, the probes unveiled much about the solar system’s two largest planets and their moons. Voyager 2 also became the first and only spacecraft to fly close to Uranus (in 1986) and Neptune (in 1989), offering humanity remarkable views of – and insights into – these distant worlds.

While Voyager 2 was conducting these flybys, Voyager 1 headed toward the boundary of the heliosphere. Upon exiting it in 2012 , Voyager 1 discovered that the heliosphere blocks 70% of cosmic rays, or energetic particles created by exploding stars. Voyager 2, after completing its planetary explorations, continued to the heliosphere boundary, exiting in 2018 . The twin spacecraft’s combined data from this region has challenged previous theories about the exact shape of the heliosphere.

voyager 2 recent news

Voyager 1 and 2 have accomplished a lot since they launched in 1977. This infographic highlights the mission’s major milestones, including visiting the four outer planets and exiting the heliosphere, or the protective bubble of magnetic fields and particles created by the Sun.

“Today, as both Voyagers explore interstellar space, they are providing humanity with observations of uncharted territory,” said Linda Spilker, Voyager’s deputy project scientist at JPL. “This is the first time we’ve been able to directly study how a star, our Sun, interacts with the particles and magnetic fields outside our heliosphere, helping scientists understand the local neighborhood between the stars, upending some of the theories about this region, and providing key information for future missions.”

The Long Journey

Over the years, the Voyager team has grown accustomed to surmounting challenges that come with operating such mature spacecraft, sometimes calling upon retired colleagues for their expertise or digging through documents written decades ago.

Each Voyager is powered by a radioisotope thermoelectric generator containing plutonium, which gives off heat that is converted to electricity. As the plutonium decays, the heat output decreases and the Voyagers lose electricity. To compensate , the team turned off all nonessential systems and some once considered essential, including heaters that protect the still-operating instruments from the frigid temperatures of space. All five of the instruments that have had their heaters turned off since 2019 are still working, despite being well below the lowest temperatures they were ever tested at.

Get the Latest JPL News

Recently, Voyager 1 began experiencing an issue that caused status information about one of its onboard systems to become garbled. Despite this, the system and spacecraft otherwise continue to operate normally, suggesting the problem is with the production of the status data, not the system itself. The probe is still sending back science observations while the engineering team tries to fix the problem or find a way to work around it.

“The Voyagers have continued to make amazing discoveries, inspiring a new generation of scientists and engineers,” said Suzanne Dodd, project manager for Voyager at JPL. “We don’t know how long the mission will continue, but we can be sure that the spacecraft will provide even more scientific surprises as they travel farther away from the Earth.”

More About the Mission

A division of Caltech in Pasadena, JPL built and operates the Voyager spacecraft. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate in Washington.

For more information about the Voyager spacecraft, visit:

https://www.nasa.gov/voyager

News Media Contact

Calla Cofield

Jet Propulsion Laboratory, Pasadena, Calif.

626-808-2469

[email protected]

Voyager 1 had a problem. Here's how NASA fixed it from 15 billion miles away.

Working from more than 15 billion miles away, NASA engineers have solved a computer problem aboard Voyager 1 , allowing the probe to send readable data five months after a chip error made its transmissions impossible to decipher.

Voyager 1, along with its sister craft, Voyager 2, are  robotic probes  that were launched in 1977. Voyager 1 reached interstellar space in 2012. It's now 15.1 billion miles away, the farthest from Earth a human-made object has ever traveled.

Learn more: Closer look at Voyager 1 and Voyager 2 .

Voyager 2 entered interstellar space − the space between the stars, starting at abou t 11 billion miles from our sun − in 2018. It's now 12.7 billion miles away.

Voyager 1's computer glitch garbled the science and engineering data the craft sends to Earth, which rendered it unreadable. That started on Nov. 14, 2023.

How did engineers fix Voyager's problem?

Engineers from NASA and the Jet Propulsion Laboratory discovered a single computer chip inside the spacecraft’s Flight Data Subsystem – which collects science and engineering information and transmits it to Earth – had malfunctioned.

Can't see our graphics? Click here .

The chip stored part of the Flight Data Subsystem's memory and software code. Engineers could still receive data from Voyager 1, but it was scrambled.

The chip could not be repaired. Instead, engineers moved software code from the chip into a different part of the subsystem's memory system.

The code was too large to to be stored in a single location in the spacecraft. Engineers divided the code into sections and stored them in different places within the subsystem. The code sections were adjusted to make sure they worked as a whole.

Engineers tested the fix by moving a code that transmits data about the spacecraft. They were rewarded with a transmission from Voyager that contained readable data about the craft's status.

All that took time. Voyager is moving about 38,000 mph. Because it's so far away, it takes 22.5 hours for a radio signal to reach Voyager. It takes another 22.5 hours for the spacecraft’s reply to reach antenna networks on Earth.

What happens next?

Engineers will reposition and synchronize the other parts of the code. That should allow Voyager 1 to start sending readable data on what it finds as it moves farther away from Earth.

SOURCE USA TODAY Network reporting and research; NASA/Jet Propulsion Laboratory/California Institute of Technology; Reuters

Voyager 1 talking to Earth again after NASA engineers 24 billion kilometres away devise software fix

NASA's Voyager 1 probe — the most distant man-made object in the universe — is returning usable information to ground control following months of spouting gibberish, the US space agency says.

The spaceship stopped sending readable data back to Earth on November 14, 2023, even though controllers could tell it was still receiving their commands.

In March, teams working at NASA's Jet Propulsion Laboratory discovered that a single malfunctioning chip was to blame.

They then had to devise a clever coding fix that worked within the tight memory constraints of its 46-year-old computer system.

"There was a section of the computer memory no longer working," project leader Dr Linda Spilker told the ABC.

"So we had to reprogram what was in that memory, move it to a different location, link everything back together and send everything up in a patch.

"And then on Saturday morning, we watched as Voyager 1 sent its first commands back and we knew we were back in communication once again."

Dr Spilker said they were receiving engineering data, so they knew the health and safety of the spacecraft.

"The next step is going to be to develop a patch so we can send back the science data," she said.

"That will really be exciting, to once again learn about interstellar space and what has been going on there that we've missed since November."

Dr Spilker said Voyager sent back data in real time, so the team had no facility to retrieve data covering the time since transmission was lost.

Launched in 1977, Voyager 1 was mankind's first spacecraft to enter the interstellar medium , in 2012, and is currently more than 24 billion kilometres from Earth.

Messages sent from Earth take about 22.5 hours to reach the spacecraft.

Its twin, Voyager 2, also left the solar system in 2018 as it was tracked by Australia's Parkes radio telescope.

Australia was also vital to a 2023 search for Voyager 2 after signals were lost, with Canberra's Deep Space Communication Complex monitoring for signals and then sending a successful command to shift the spacecraft's antenna 2 degrees . 

Both Voyager spacecraft carry " Golden Records ": 12-inch, gold-plated copper disks intended to convey the story of our world to extraterrestrials.

These include a map of our solar system, a piece of uranium that serves as a radioactive clock allowing recipients to date the spaceship's launch, and symbolic instructions that convey how to play the record.

The contents of the record, selected for NASA by a committee chaired by legendary astronomer Carl Sagan, include encoded images of life on Earth, as well as music and sounds that can be played using an included stylus.

Their power banks were expected to be depleted sometime after 2025, but Dr Spilker said several systems had been turned off, so they were hopeful the two spacecraft would function into the 2030s.

They will then continue to wander the Milky Way, potentially for eternity, in silence.

An image depicting two sides of a golden record. On one side it says The Sounds of Earth. On the other side are various diagrams

  • X (formerly Twitter)

Related Stories

Nasa restores contact with missing voyager 2 spacecraft after weeks of silence.

Black and white photo of men near satellite

How songs from tiny villages in the Pacific are now floating in outer space

Composite of The Sounds of Earth discs sent into space on the Voyager space probe.

Voyager 1 spacecraft enters interstellar space

Artist's impression of Voyager 1 passing through space.

  • Astronomy (Space)
  • Computer Science
  • Space Exploration
  • United States

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

Galleries of Images Voyager Took

The Voyager 1 and 2 spacecraft explored Jupiter, Saturn, Uranus and Neptune before starting their journey toward interstellar space. Here you'll find some of those iconic images, including "The Pale Blue Dot" - famously described by Carl Sagan - and what are still the only up-close images of Uranus and Neptune.

Jupiters Great Spot

Photography of Jupiter began in January 1979, when images of the brightly banded planet already exceeded the best taken from Earth. Voyager 1 completed its Jupiter encounter in early April, after taking almost 19,000 pictures and many other scientific measurements. Voyager 2 picked up the baton in late April and its encounter continued into August. They took more than 33,000 pictures of Jupiter and its five major satellites.

Image of Saturn

The Voyager 1 and 2 Saturn encounters occurred nine months apart, in November 1980 and August 1981. Voyager 1 is leaving the solar system. Voyager 2 completed its encounter with Uranus in January 1986 and with Neptune in August 1989, and is now also en route out of the solar system.

Image of Uranus

NASA's Voyager 2 spacecraft flew closely past distant Uranus, the seventh planet from the Sun, in January. At its closet, the spacecraft came within 81,800 kilometers (50,600 miles) of Uranus's cloudtops on Jan. 24, 1986. Voyager 2 radioed thousands of images and voluminous amounts of other scientific data on the planet, its moons, rings, atmosphere, interior and the magnetic environment surrounding Uranus.

Image of Neptune

In the summer of 1989, NASA's Voyager 2 became the first spacecraft to observe the planet Neptune, its final planetary target. Passing about 4,950 kilometers (3,000 miles) above Neptune's north pole, Voyager 2 made its closest approach to any planet since leaving Earth 12 years ago. Five hours later, Voyager 2 passed about 40,000 kilometers (25,000 miles) from Neptune's largest moon, Triton, the last solid body the spacecraft will have an opportunity to study.

Image of Neptune

This narrow-angle color image of the Earth, dubbed 'Pale Blue Dot', is a part of the first ever 'portrait' of the solar system taken by Voyager 1. The spacecraft acquired a total of 60 frames for a mosaic of the solar system from a distance of more than 4 billion miles from Earth and about 32 degrees above the ecliptic. From Voyager's great distance Earth is a mere point of light, less than the size of a picture element even in the narrow-angle camera. Earth was a crescent only 0.12 pixel in size. Coincidentally, Earth lies right in the center of one of the scattered light rays resulting from taking the image so close to the sun. This blown-up image of the Earth was taken through three color filters -- violet, blue and green -- and recombined to produce the color image. The background features in the image are artifacts resulting from the magnification.

  • Work & Careers
  • Life & Arts

Become an FT subscriber

Try unlimited access Only $1 for 4 weeks

Then $75 per month. Complete digital access to quality FT journalism on any device. Cancel anytime during your trial.

  • Global news & analysis
  • Expert opinion
  • Special features
  • FirstFT newsletter
  • Videos & Podcasts
  • Android & iOS app
  • FT Edit app
  • 10 gift articles per month

Explore more offers.

Standard digital.

  • FT Digital Edition

Premium Digital

Print + premium digital, weekend print + standard digital, weekend print + premium digital.

Today's FT newspaper for easy reading on any device. This does not include ft.com or FT App access.

  • 10 additional gift articles per month
  • Global news & analysis
  • Exclusive FT analysis
  • Videos & Podcasts
  • FT App on Android & iOS
  • Everything in Standard Digital
  • Premium newsletters
  • Weekday Print Edition
  • FT Weekend Print delivery
  • Everything in Premium Digital

Essential digital access to quality FT journalism on any device. Pay a year upfront and save 20%.

  • Everything in Print

Complete digital access to quality FT journalism with expert analysis from industry leaders. Pay a year upfront and save 20%.

Terms & Conditions apply

Explore our full range of subscriptions.

Why the ft.

See why over a million readers pay to read the Financial Times.

International Edition

COMMENTS

  1. Voyager

    Both Voyager 1 and Voyager 2 have reached "Interstellar space" and each continue their unique journey through the Universe. In the NASA Eyes on the Solar System app, you can see the real spacecraft trajectories of the Voyagers, which are updated every five minutes. Distance and velocities are updated in real-time.

  2. NASA Restores Voyager 2 Contact With a Last-Ditch 'Shout' Into Space

    According to Dr. Spilker, mission control in California reacted to the good news with a lot of high fives, tears and sighs of relief. Voyager 2 launched to space on Aug. 20, 1977, to fly by the ...

  3. NASA's Voyager Will Do More Science With New Power Strategy

    Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469. [email protected]. 2023-059. The plan will keep Voyager 2's science instruments turned on a few years longer than previously anticipated, enabling yet more revelations from interstellar space.

  4. NASA Mission Update: Voyager 2 Communications Pause

    UPDATE, Aug. 4, 2023: NASA has reestablished full communications with Voyager 2. The agency's Deep Space Network facility in Canberra, Australia, sent the equivalent of an interstellar "shout" more than 12.3 billion miles (19.9 billion kilometers) to Voyager 2, instructing the spacecraft to reorient itself and turn its antenna back to Earth.

  5. NASA Mission Update: Voyager 2 Communications Pause

    Once the spacecraft's antenna is realigned with Earth, communications should resume. UPDATE, Aug. 4, 2023: NASA has reestablished full communications with Voyager 2. The agency's Deep Space Network facility in Canberra, Australia, sent the equivalent of an interstellar "shout" more than 12.3 billion miles (19.9 billion kilometers) to ...

  6. Voyager 2

    NASA's Voyager 2 is the second spacecraft to enter interstellar space. On Dec. 10, 2018, the spacecraft joined its twin - Voyager 1 - as the only human-made objects to enter the space between the stars. Voyager 2 is the only spacecraft to study all four of the solar system's giant planets at close range. Voyager 2 discovered a 14th moon at ...

  7. NASA's Voyager 2 Probe Enters Interstellar Space

    For the second time in history, a human-made object has reached the space between the stars. NASA's Voyager 2 probe now has exited the heliosphere - the protective bubble of particles and magnetic fields created by the Sun.. Members of NASA's Voyager team will discuss the findings at a news conference at 11 a.m. EST (8 a.m. PST) today at the meeting of the American Geophysical Union (AGU ...

  8. NASA restores contact with Voyager 2 spacecraft after mistake led to

    "Voyager's back," project scientist Linda Spilker chimed in. Voyager 2 has been hurtling through space since its launch in 1977 to explore the outer solar system. Launched two weeks later, its twin, Voyager 1, is now the most distant spacecraft — 15 billion miles (24 billion kilometers) away — and still in contact.

  9. Voyager

    Data from this instrument suggested that Voyager 2 entered interstellar space on November 5, 2018, when the inside particles (green) dipped closer to 0.0 and the outside particles (orange) rose to above 2.0. ... NEWS | March 15, 2024 Since November 2023, NASA's Voyager 1 spacecraft has been sending a steady radio signal to Earth, but the ...

  10. Voyager 2 News Updates

    News updates on Voyager 2's encounter with Neptune will be available to the public during late August on special telephone numbers from the Jet Propulsion Laboratory. Frequently updated reports on the spacecraft mission can be heard August 19-31 by phoning (900) 590-1234. Cost for each call on this 900 number is 45 cents for the first minute ...

  11. NASA hears 'heartbeat' of Voyager 2 after losing communication

    The Voyager mission team at NASA has been able to detect a signal from Voyager 2 after losing contact with the spacecraft, which has been operating for nearly 46 years. "We enlisted the help of ...

  12. Voyager 2: Nasa fully back in contact with lost space probe

    BBC News. Nasa is back in full contact with its lost Voyager 2 probe months earlier than expected, the space agency said. In July a wrong command was made to the spacecraft, sent to explore space ...

  13. NASA hears signal from Voyager 2 spacecraft after mistakenly cutting

    On Wednesday, Aug. 2, 2023, NASA's Deep Space Network sent a command to correct a problem with its antenna. It took more than 18 hours for the signal to reach Voyager 2 _ more than 12 billion miles away _ and another 18 hours to hear back. On Friday, Aug. 4, the spacecraft started returning data again. (AP Photo/NASA, File)

  14. Voyager 1 regains communications with NASA after inventive fix

    The latest issue experienced by Voyager 1 first cropped up in November 2023, ... Voyager 2, which is operating normally, has traveled more than 12.6 billion miles (20.3 billion kilometers) from ...

  15. Voyager 1 is sending data back to Earth for the first time in 5 ...

    The latest issue experienced by Voyager 1 first cropped up in November 2023, ... Voyager 2, which is operating normally, has traveled more than 12.6 billion miles (20.3 billion kilometers) from ...

  16. Voyager 1 transmitting data again after Nasa remotely fixes 46-year-old

    Voyager 1 will come within 1.7 light years of a star in the constellation Ursa Minor, while Voyager 2 will come within a similar distance of a star called Ross 248 in the constellation of Andromeda.

  17. NASA's Voyager 1 team is having success in repairing a worrying ...

    The Voyager 1 and Voyager 2 probes launched in 1977 on a mission to study Jupiter and Saturn but continued onward through the outer reaches of the solar system.

  18. NASA's Voyager 1 Resumes Sending Engineering Updates to Earth

    The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars). Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the spacecraft was still receiving their commands and otherwise operating normally.

  19. NASA's interstellar Voyager 1 spacecraft isn't doing so well

    Since late 2023, engineers have been trying to get the Voyager spacecraft back online. On Dec. 12, 2023, NASA shared some worrisome news about Voyager 1, the first probe to walk away from our ...

  20. NASA's Voyager 1 spacecraft finally phones home after 5 months of no

    Voyager 2, thankfully, is still operational and communicating well with Earth. ... Breaking space news, the latest updates on rocket launches, skywatching events and more!

  21. Voyager 1 stops communicating with Earth

    CNN —. NASA's Voyager 1 spacecraft has experienced a computer glitch that's causing a bit of a communication breakdown between the 46-year-old probe and its mission team on Earth. Engineers ...

  22. NASA's Voyager 1 resumes sending engineering updates to Earth

    The team started by singling out the code responsible for packaging the spacecraft's engineering data. They sent it to its new location in the FDS memory on April 18. A radio signal takes about 22 ...

  23. Voyager, NASA's Longest-Lived Mission, Logs 45 Years in Space

    Voyager 2 also became the first and only spacecraft to fly close to Uranus (in 1986) and Neptune (in 1989), offering humanity remarkable views of - and insights into - these distant worlds. While Voyager 2 was conducting these flybys, Voyager 1 headed toward the boundary of the heliosphere. ... Get the Latest JPL News.

  24. How NASA fixed a problem on Voyager 1 from 15 billion miles away

    Learn more: Closer look at Voyager 1 and Voyager 2. Voyager 2 entered interstellar space − the space between the stars, starting at about 11 billion miles from our sun − in 2018. It's now 12.7 ...

  25. Voyager 1 talking to Earth again after NASA engineers 24 billion

    Launched in 1977, Voyager 1 was mankind's first spacecraft to enter the interstellar medium, in 2012, and is currently more than 24 billion kilometres from Earth.. Messages sent from Earth take ...

  26. Voyager

    Galleries of Images Voyager Took. The Voyager 1 and 2 spacecraft explored Jupiter, Saturn, Uranus and Neptune before starting their journey toward interstellar space. Here you'll find some of those iconic images, including "The Pale Blue Dot" - famously described by Carl Sagan - and what are still the only up-close images of Uranus and Neptune.

  27. Rejoice! Voyager 1 is back from the dead

    Voyager 1, now outside the solar system and the most distant man-made object at 24bn km away, has begun sending meaningful signals once again. The news feels both uplifting and bittersweet.