Voyager 1: 'The Spacecraft That Could' Hits New Milestone

voyager 1 trip

Voyager 1, already the most distant human-made object in the cosmos, reaches 100 astronomical units from the sun on Tuesday, August 15 at 5:13 p.m. Eastern time (2:13 p.m. Pacific time).

News Media Contact

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-0880

[email protected]

Inside NASA's 5-month fight to save the Voyager 1 mission in interstellar space

Artist's concept depicts NASA's Voyager 1 spacecraft entering interstellar space.

After working for five months to re-establish communication with the farthest-flung human-made object in existence, NASA announced this week that the Voyager 1 probe had finally phoned home.

For the engineers and scientists who work on NASA’s longest-operating mission in space, it was a moment of joy and intense relief.

“That Saturday morning, we all came in, we’re sitting around boxes of doughnuts and waiting for the data to come back from Voyager,” said Linda Spilker, the project scientist for the Voyager 1 mission at NASA’s Jet Propulsion Laboratory in Pasadena, California. “We knew exactly what time it was going to happen, and it got really quiet and everybody just sat there and they’re looking at the screen.”

When at long last the spacecraft returned the agency’s call, Spilker said the room erupted in celebration.

“There were cheers, people raising their hands,” she said. “And a sense of relief, too — that OK, after all this hard work and going from barely being able to have a signal coming from Voyager to being in communication again, that was a tremendous relief and a great feeling.”

Members of the Voyager flight team celebrate in a conference room at NASA’s Jet Propulsion Laboratory on April 20.

The problem with Voyager 1 was first detected in November . At the time, NASA said it was still in contact with the spacecraft and could see that it was receiving signals from Earth. But what was being relayed back to mission controllers — including science data and information about the health of the probe and its various systems — was garbled and unreadable.

That kicked off a monthslong push to identify what had gone wrong and try to save the Voyager 1 mission.

Spilker said she and her colleagues stayed hopeful and optimistic, but the team faced enormous challenges. For one, engineers were trying to troubleshoot a spacecraft traveling in interstellar space , more than 15 billion miles away — the ultimate long-distance call.

“With Voyager 1, it takes 22 1/2 hours to get the signal up and 22 1/2 hours to get the signal back, so we’d get the commands ready, send them up, and then like two days later, you’d get the answer if it had worked or not,” Spilker said.

A Titan/Centaur-6 launch vehicle carries NASA's Voyager 1 at the Kennedy Space Center on Sept. 5, 1977.

The team eventually determined that the issue stemmed from one of the spacecraft’s three onboard computers. Spilker said a hardware failure, perhaps as a result of age or because it was hit by radiation, likely messed up a small section of code in the memory of the computer. The glitch meant Voyager 1 was unable to send coherent updates about its health and science observations.

NASA engineers determined that they would not be able to repair the chip where the mangled software is stored. And the bad code was also too large for Voyager 1's computer to store both it and any newly uploaded instructions. Because the technology aboard Voyager 1 dates back to the 1960s and 1970s, the computer’s memory pales in comparison to any modern smartphone. Spilker said it’s roughly equivalent to the amount of memory in an electronic car key.

The team found a workaround, however: They could divide up the code into smaller parts and store them in different areas of the computer’s memory. Then, they could reprogram the section that needed fixing while ensuring that the entire system still worked cohesively.

That was a feat, because the longevity of the Voyager mission means there are no working test beds or simulators here on Earth to test the new bits of code before they are sent to the spacecraft.

“There were three different people looking through line by line of the patch of the code we were going to send up, looking for anything that they had missed,” Spilker said. “And so it was sort of an eyes-only check of the software that we sent up.”

The hard work paid off.

NASA reported the happy development Monday, writing in a post on X : “Sounding a little more like yourself, #Voyager1.” The spacecraft’s own social media account responded , saying, “Hi, it’s me.”

So far, the team has determined that Voyager 1 is healthy and operating normally. Spilker said the probe’s scientific instruments are on and appear to be working, but it will take some time for Voyager 1 to resume sending back science data.

Voyager 1 and its twin, the Voyager 2 probe, each launched in 1977 on missions to study the outer solar system. As it sped through the cosmos, Voyager 1 flew by Jupiter and Saturn, studying the planets’ moons up close and snapping images along the way.

Voyager 2, which is 12.6 billion miles away, had close encounters with Jupiter, Saturn, Uranus and Neptune and continues to operate as normal.

In 2012, Voyager 1 ventured beyond the solar system , becoming the first human-made object to enter interstellar space, or the space between stars. Voyager 2 followed suit in 2018.

Spilker, who first began working on the Voyager missions when she graduated college in 1977, said the missions could last into the 2030s. Eventually, though, the probes will run out of power or their components will simply be too old to continue operating.

Spilker said it will be tough to finally close out the missions someday, but Voyager 1 and 2 will live on as “our silent ambassadors.”

Both probes carry time capsules with them — messages on gold-plated copper disks that are collectively known as The Golden Record . The disks contain images and sounds that represent life on Earth and humanity’s culture, including snippets of music, animal sounds, laughter and recorded greetings in different languages. The idea is for the probes to carry the messages until they are possibly found by spacefarers in the distant future.

“Maybe in 40,000 years or so, they will be getting relatively close to another star,” Spilker said, “and they could be found at that point.”

voyager 1 trip

Denise Chow is a reporter for NBC News Science focused on general science and climate change.

NASA Logo

Suggested Searches

  • Climate Change
  • Expedition 64
  • Mars perseverance
  • SpaceX Crew-2
  • International Space Station
  • View All Topics A-Z

Humans in Space

Earth & climate, the solar system, the universe, aeronautics, learning resources, news & events.

Discovery Alert: Spock’s Home Planet Goes ‘Poof’

Discovery Alert: Spock’s Home Planet Goes ‘Poof’

NASA’s OSIRIS-APEX Unscathed After Searing Pass of Sun

NASA’s OSIRIS-APEX Unscathed After Searing Pass of Sun

This computer-generated 3D model of Venus’ surface shows the volcano Sif Mons

Ongoing Venus Volcanic Activity Discovered With NASA’s Magellan Data

  • Search All NASA Missions
  • A to Z List of Missions
  • Upcoming Launches and Landings
  • Spaceships and Rockets
  • Communicating with Missions
  • James Webb Space Telescope
  • Hubble Space Telescope
  • Why Go to Space
  • Astronauts Home
  • Commercial Space
  • Destinations
  • Living in Space
  • Explore Earth Science
  • Earth, Our Planet
  • Earth Science in Action
  • Earth Multimedia
  • Earth Science Researchers
  • Pluto & Dwarf Planets
  • Asteroids, Comets & Meteors
  • The Kuiper Belt
  • The Oort Cloud
  • Skywatching
  • The Search for Life in the Universe
  • Black Holes
  • The Big Bang
  • Dark Energy & Dark Matter
  • Earth Science
  • Planetary Science
  • Astrophysics & Space Science
  • The Sun & Heliophysics
  • Biological & Physical Sciences
  • Lunar Science
  • Citizen Science
  • Astromaterials
  • Aeronautics Research
  • Human Space Travel Research
  • Science in the Air
  • NASA Aircraft
  • Flight Innovation
  • Supersonic Flight
  • Air Traffic Solutions
  • Green Aviation Tech
  • Drones & You
  • Technology Transfer & Spinoffs
  • Space Travel Technology
  • Technology Living in Space
  • Manufacturing and Materials
  • Science Instruments
  • For Kids and Students
  • For Educators
  • For Colleges and Universities
  • For Professionals
  • Science for Everyone
  • Requests for Exhibits, Artifacts, or Speakers
  • STEM Engagement at NASA
  • NASA's Impacts
  • Centers and Facilities
  • Directorates
  • Organizations
  • People of NASA
  • Internships
  • Our History
  • Doing Business with NASA
  • Get Involved
  • Aeronáutica
  • Ciencias Terrestres
  • Sistema Solar
  • All NASA News
  • Video Series on NASA+
  • Newsletters
  • Social Media
  • Media Resources
  • Upcoming Launches & Landings
  • Virtual Events
  • Sounds and Ringtones
  • Interactives
  • STEM Multimedia

Greenland glacier

Twin NASA Satellites Ready to Help Gauge Earth’s Energy Balance

STS-96 crew

25 Years Ago: STS-96 Resupplies the Space Station

voyager 1 trip

Swarming for Success: Starling Completes Primary Mission

A large group photo taken indoors. The background features three large insignias: one for the International Space Station, the NASA logo in the center, and a mission patch on the right.

Welcome Back to Planet Earth, Expedition 70 Crew! 

Cristoforetti wears a hot pink shirt, black pants with white stripes on the side, and blue running shoes and is watching a laptop in front of her. A white harness on her torso connects her to the sides of the green treadmill. Her legs are slightly blurred from the motion of her running and the entire image is tilted to the left so that she seems to be running down a steep hill.

Astronaut Exercise

A woman sits on the floor and looks through an eyepiece device. She is wearing a light brown flight suit. Two people are behind her in blue flight suits and one person in front of her to the right is wearing a light brown flight suit.

Eleasa Kim: Pioneering CLDP Payload Operations and Cultural Integration

NASA, IBM Research to Release New AI Model for Weather, Climate

NASA, IBM Research to Release New AI Model for Weather, Climate

Images of asteroid Dinkinesh and its satellite Selam from NASA's Lucy spacecraft.

NASA Lucy Images Reveal Asteroid Dinkinesh to be Surprisingly Complex

JPL engineers and technicians prepare NASA’s Farside Seismic Suite for testing

NASA to Measure Moonquakes With Help From InSight Mars Mission

Eventually, our Sun will run out of fuel and die (though not for another 5 billion years). As it does, it will become like the object seen here, the Cat’s Eye Nebula, which is a planetary nebula. A fast wind from the remaining stellar core rams into the ejected atmosphere and pushes it outward, creating wispy structures seen in X-rays by Chandra and optical light by the Hubble Space Telescope.

Travel Through Data From Space in New 3D Instagram Experiences

Arizona Students Go on an Exoplanet Watch 

Arizona Students Go on an Exoplanet Watch 

Graphic shows a possible future General Electric jet engine with exposed fan blades in front of a cut-away-interior view of its core mechanisms -- all part of NASA's HyTEC research project.

NASA, Industry to Start Designing More Sustainable Jet Engine Core

Two men work at a desk in a NASA office as one points to some Aviary computer code displayed on a monitor. A picture of a future aircraft design appears on a neighboring monitor.

Aviary: A New NASA Software Platform for Aircraft Modelling

voyager 1 trip

NASA’s X-59 Passes Milestone Toward Safe First Flight 

An array of microphones on an airfield, with a sunrise in the background

Tech Today: Measuring the Buzz, Hum, and Rattle

a hand holding a silicon chip in front of an infrared camera

NASA’s Compact Infrared Cameras Enable New Science

Kenyan students surround a computer laptop. They are smiling and laughing at the screen.

NASA Around the World: Interns Teach Virtual Lessons in Kenya

Joint NASA-Roscosmos crew of STS-88, the first space station assembly mission

15 Years Ago: First Time all Partners Represented aboard the International Space Station

Professional portrait of a young Asian American woman wearing glasses, a black blazer, and a white silk shirt.

Johnson Celebrates AA and NHPI Heritage Month: Britney Tang

2021 Astronaut Candidates Stand in Recognition

Diez maneras en que los estudiantes pueden prepararse para ser astronautas

Astronaut Marcos Berrios

Astronauta de la NASA Marcos Berríos

image of an experiment facility installed in the exterior of the space station

Resultados científicos revolucionarios en la estación espacial de 2023

Voyager 1’s mission to the outer planet begins.

The headshot image of NASA

The Voyager mission was designed to take advantage of a rare geometric arrangement of the outer planets in the late 1970s and the 1980s which allowed for a four-planet tour with a minimum of propellant and trip time. This layout of Jupiter, Saturn, Uranus and Neptune, which occurs about every 175 years, allows a spacecraft on a particular flight path to swing from one planet to the next without the need for large onboard propulsion systems.

NASA’s Voyager 1 spacecraft launched after Voyager 2, on a faster, shorter trajectory. This image captures that moment in Cape Canaveral, Florida on Sept. 5, 1977.

Image credit: NASA/JPL-Caltech/KSC

Voyager 1: Facts about Earth's farthest spacecraft

Voyager 1 continues to explore the cosmos along with its twin probe, Voyager 2.

Artist's illustration of Voyager 1 probe looking back at the solar system from a great distance.

The Grand Tour

Voyager 1 jupiter flyby, voyager 1 visits saturn and its moons, voyager 1 enters interstellar space, voyager 1's interstellar adventures, additional resources.

Voyager 1 is the first spacecraft to travel beyond the solar system and reach interstellar space . 

The probe launched on Sept. 5, 1977 — about two weeks after its twin Voyager 2 — and as of August 2022 is approximately 14.6 billion miles (23.5 billion kilometers) away from our planet, making it Earth 's farthest spacecraft. Voyager 1 is currently zipping through space at around 38,000 mph (17 kilometers per second), according to NASA Jet Propulsion Laboratory .

When Voyager 1 launched a mission to explore the outer planets in our solar system nobody knew how important the probe would still be 45 years later The probe has remained operational long past expectations and continues to send information about its journeys back to Earth. 

Related: Celebrate 45 years of Voyager with these amazing images of our solar system (gallery)

Elizabeth Howell, Ph.D., is a staff writer in the spaceflight channel since 2022. She was contributing writer for  Space.com  for 10 years before that, since 2012. Elizabeth's on-site reporting includes two human spaceflight launches from Kazakhstan, three space shuttle missions in Florida, and embedded reporting from a simulated Mars mission in Utah. 

Size: Voyager 1's body is about the size of a subcompact car. The boom for its magnetometer instrument extends 42.7 feet (13 meters). Weight (at launch): 1,797 pounds (815 kilograms). Launch date: Sept. 5, 1977

Jupiter flyby date: March 5, 1979

Saturn flyby date: Nov. 12, 1980.

Entered interstellar space: Aug. 25, 2012. 

The spacecraft entered interstellar space in August 2012, almost 35 years after its voyage began. The discovery wasn't made official until 2013, however, when scientists had time to review the data sent back from Voyager 1.

Voyager 1 was the second of the twin spacecraft to launch, but it was the first to race by Jupiter and Saturn . The images Voyager 1 sent back have been used in schoolbooks and by many media outlets for a generation. The spacecraft also carries a special record — The Golden Record — that's designed to carry voices and music from Earth out into the cosmos. 

According to NASA Jet Propulsion Laboratory (JPL) , Voyager 1 has enough fuel to keep its instruments running until at least 2025. By then, the spacecraft will be approximately 13.8 billion miles (22.1 billion kilometers) away from the sun.  

The Voyager missions took advantage of a special alignment of the outer planets that happens just once every 176 years. This alignment allows spacecraft to gravitationally "slingshot" from one planet to the next, making the most efficient use of their limited fuel.

NASA originally planned to send two spacecraft past Jupiter, Saturn and Pluto and two other probes past Jupiter, Uranus and Neptune . Budgetary reasons forced the agency to scale back its plans, but NASA still got a lot out of the two Voyagers it launched.

Voyager 2 flew past Jupiter, Saturn, Uranus and Neptune , while Voyager 1 focused on Jupiter and Saturn.

Recognizing that the Voyagers would eventually fly to interstellar space, NASA authorized the production of two Golden Records to be placed on board the spacecraft. Sounds ranging from whale calls to the music of Chuck Berry were placed on board, as well as spoken greetings in 55 languages. 

The 12-inch-wide (30 centimeters), gold-plated copper disks also included pictorials showing how to operate them and the position of the sun among nearby pulsars (a type of fast-spinning stellar corpse known as a neutron star ), in case extraterrestrials someday stumbled onto the spacecraft and wondered where they came from.

Both spacecraft are powered by three radioisotope thermoelectric generators , devices that convert the heat released by the radioactive decay of plutonium to electricity. Both probes were outfitted with 10 scientific instruments, including a two-camera imaging system, multiple spectrometers, a magnetometer and gear that detects low-energy charged particles and high-energy cosmic rays . Mission team members have also used the Voyagers' communications system to help them study planets and moons, bringing the total number of scientific investigations on each craft to 11.

Voyager 1 almost didn't get off the ground at its launch , as its rocket came within 3.5 seconds of running out of fuel on Sept. 5, 1977.

But the probe made it safely to space and raced past its twin after launch, getting beyond the main asteroid belt between Mars and Jupiter before Voyager 2 did. Voyager 1's first pictures of Jupiter beamed back to Earth in April 1978, when the probe was 165 million miles (266 million kilometers) from home.

According to NASA , each voyager probe has about 3 million times less memory than a mobile phone and transmits data approximately 38,000 times slower than a 5g internet connection.  

To NASA's surprise, in March 1979 Voyager 1 spotted a thin ring circling the giant planet. It found two new moons as well — Thebe and Metis. Additionally, Voyager 1 sent back detailed pictures of Jupiter's big Galilean moons ( Io , Europa , Ganymede and Callisto ) as well as Amalthea .

Like the Pioneer spacecraft before it , Voyager's look at Jupiter's moons revealed them to be active worlds of their own. And Voyager 1 made some intriguing discoveries about these natural satellites. For example, Io's many volcanoes and mottled yellow-brown-orange surface showed that, like planets, moons can have active interiors.

Additionally, Voyager 1 sent back photos of Europa showing a relatively smooth surface broken up by lines, hinting at ice and maybe even an ocean underneath. (Subsequent observations and analyses have revealed that Europa likely harbors a huge subsurface ocean of liquid water, which may even be able to support Earth-like life .)

Voyager 1's closest approach to Jupiter was on March 5, 1979, when it came within 174,000 miles (280,000 km) of the turbulent cloud tops. Then it was time for the probe to aim for Saturn.

Scientists only had to wait about a year, until 1980, to get close-up pictures of Saturn. Like Jupiter, the ringed planet turned out to be full of surprises.

One of Voyager 1's targets was the F ring, a thin structure discovered only the year previously by NASA's Pioneer 11 probe. Voyager's higher-resolution camera spotted two new moons, Prometheus and Pandora, whose orbits keep the icy material in the F ring in a defined orbit. It also discovered Atlas and a new ring, the G ring, and took images of several other Saturn moons.

One puzzle for astronomers was Titan , the second-largest moon in the solar system (after Jupiter's Ganymede). Close-up pictures of Titan showed nothing but orange haze, leading to years of speculation about what it was like underneath. It wouldn't be until the mid-2000s that humanity would find out, thanks to photos snapped from beneath the haze by the European Space Agency's Huygens atmospheric probe .

The Saturn encounter marked the end of Voyager 1's primary mission. The focus then shifted to tracking the 1,590-pound (720 kg) craft as it sped toward interstellar space.

Two decades before it notched that milestone, however, Voyager 1 took one of the most iconic photos in spaceflight history. On Feb. 14, 1990, the probe turned back toward Earth and snapped an image of its home planet from 3.7 billion miles (6 billion km) away. The photo shows Earth as a tiny dot suspended in a ray of sunlight. 

Voyager 1 took dozens of other photos that day, capturing five other planets and the sun in a multi-image "solar system family portrait." But the Pale Blue Dot picture stands out, reminding us that Earth is a small outpost of life in an incomprehensibly vast universe.

Voyager 1 left the heliosphere — the giant bubble of charged particles that the sun blows around itself — in August 2012, popping free into interstellar space. The discovery was made public in a study published in the journal Science the following year.

The results came to light after a powerful solar eruption was recorded by Voyager 1's plasma wave instrument between April 9 and May 22, 2013. The eruption caused electrons near Voyager 1 to vibrate. From the oscillations, researchers discovered that Voyager 1's surroundings had a higher density than what is found just inside the heliosphere.

It seems contradictory that electron density is higher in interstellar space than it is in the sun's neighborhood. But researchers explained that, at the edge of the heliosphere, the electron density is dramatically low compared with locations near Earth. 

Researchers then backtracked through Voyager 1's data and nailed down the official departure date to Aug. 25, 2012. The date was fixed not only by the electron oscillations but also by the spacecraft's measurements of charged solar particles. 

On that fateful day — which was the same day that Apollo 11 astronaut Neil Armstrong died — the probe saw a 1,000-fold drop in these particles and a 9% increase in galactic cosmic rays that come from outside the solar system . At that point, Voyager 1 was 11.25 billion miles (18.11 billion km) from the sun, or about 121 astronomical units (AU).

One AU is the average Earth-sun distance — about 93 million miles (150 million km).

You can keep tabs on the Voyager 1's current distance and mission status on this NASA website .

Since flying into interstellar space, Voyager 1 has sent back a variety of valuable information about conditions in this zone of the universe . Its discoveries include showing that cosmic radiation out there is very intense, and demonstrating how charged particles from the sun interact with those emitted by other stars , mission project scientist Ed Stone, of the California Institute of Technology in Pasadena, told Space.com in September 2017 .

The spacecraft's capabilities continue to astound engineers. In December 2017, for example, NASA announced that Voyager 1 successfully used its backup thrusters to orient itself to "talk" with Earth . The trajectory correction maneuver (TCM) thrusters hadn't been used since November 1980, during Voyager 1's flyby of Saturn. Since then, the spacecraft had primarily used its standard attitude-control thrusters to swing the spacecraft in the right orientation to communicate with Earth. 

As the performance of the attitude-control thrusters began to deteriorate, however, NASA decided to test the TCM thrusters — an idea that could extend Voyager 1's operational life. That test ultimately succeeded. 

"With these thrusters that are still functional after 37 years without use, we will be able to extend the life of the Voyager 1 spacecraft by two to three years," Voyager project manager Suzanne Dodd, of NASA's Jet Propulsion, Laboratory (JPL) in Southern California, said in a statement in December 2017 .

Mission team members have taken other measures to extend Voyager 1's life as well. For example, they turned off the spacecraft's cameras shortly after the Pale Blue Dot photo was taken to help conserve Voyager 1's limited power supply. (The cameras wouldn't pick up much in the darkness of deep space anyway.) Over the years, the mission team has turned off five other scientific instruments as well, leaving Voyager 1 with four that are still functioning — the Cosmic Ray Subsystem, the Low-Energy Charged Particles instrument, the Magnetometer and the Plasma Wave Subsystem. (Similar measures have been taken with Voyager 2, which currently has five operational instruments .)

The Voyager spacecraft each celebrated 45 years in space in 2022, a monumental milestone for the twin probes.

"Over the last 45 years, the Voyager missions have been integral in providing this knowledge and have helped change our understanding of the sun and its influence in ways no other spacecraft can," says Nicola Fox, director of the Heliophysics Division at NASA Headquarters in Washington, in a NASA statement .

"Today, as both Voyagers explore interstellar space, they are providing humanity with observations of uncharted territory," said Linda Spilker, Voyager's deputy project scientist at JPL in the same NASA statement.

"This is the first time we've been able to directly study how a star, our Sun, interacts with the particles and magnetic fields outside our heliosphere, helping scientists understand the local neighborhood between the stars, upending some of the theories about this region, and providing key information for future missions." Spilker continues.

Voyager 1's next big encounter will take place in 40,000 years when the probe comes within 1.7 light-years of the star AC +79 3888. (The star is roughly 17.5 light-years from Earth.) However, Voyager 1's falling power supply means it will probably stop collecting scientific data around 2025.

You can learn much more about both Voyagers' design, scientific instruments and mission goals at JPL's Voyager site . NASA has lots of in-depth information about the Pale Blue Dot photo, including Carl Sagan's large role in making it happen, here . And if you're interested in the Golden Record, check out this detailed New Yorker piece by Timothy Ferris, who produced the historic artifact.  Explore the history of Voyager with this interactive timeline courtesy of NASA.  

Bibliography

  • Bell, Jim. " The Interstellar Age: Inside the Forty-Year Voyager Mission ," Dutton, 2015.
  • Landau, Elizabeth. "The Voyagers in popular culture," Dec. 1, 2017. https://www.nasa.gov/feature/jpl/the-voyagers-in-popular-culture
  • PBS, "Voyager: A history in photos." https://www.pbs.org/the-farthest/mission/voyager-history-photos/

Join our Space Forums to keep talking space on the latest missions, night sky and more! And if you have a news tip, correction or comment, let us know at: [email protected].

Get the Space.com Newsletter

Breaking space news, the latest updates on rocket launches, skywatching events and more!

Elizabeth Howell (she/her), Ph.D., is a staff writer in the spaceflight channel since 2022 covering diversity, education and gaming as well. She was contributing writer for Space.com for 10 years before joining full-time. Elizabeth's reporting includes multiple exclusives with the White House and Office of the Vice-President of the United States, an exclusive conversation with aspiring space tourist (and NSYNC bassist) Lance Bass, speaking several times with the International Space Station, witnessing five human spaceflight launches on two continents, flying parabolic, working inside a spacesuit, and participating in a simulated Mars mission. Her latest book, " Why Am I Taller ?", is co-written with astronaut Dave Williams. Elizabeth holds a Ph.D. and M.Sc. in Space Studies from the University of North Dakota, a Bachelor of Journalism from Canada's Carleton University and a Bachelor of History from Canada's Athabasca University. Elizabeth is also a post-secondary instructor in communications and science at several institutions since 2015; her experience includes developing and teaching an astronomy course at Canada's Algonquin College (with Indigenous content as well) to more than 1,000 students since 2020. Elizabeth first got interested in space after watching the movie Apollo 13 in 1996, and still wants to be an astronaut someday. Mastodon: https://qoto.org/@howellspace

  • Daisy Dobrijevic Reference Editor

Boeing Starliner astronauts arrive at launch site for 1st flight test on June 1 (photos)

NASA's James Webb Space Telescope mission — Live updates

Watch Russian cargo ship launch toward the ISS early on May 30

Most Popular

  • 2 'Star Trek #500' cover showcases a commanding collection of cosmic captains
  • 3 Watch 1st 'Star Wars: Hunters' gameplay trailer ahead of June 4 launch (video)
  • 4 Massive sunspot responsible for May's epic auroras unleashes major X-class solar flare (video)
  • 5 Boeing Starliner astronauts arrive at launch site for 1st flight test on June 1 (photos)

voyager 1 trip

  • Mobile Site
  • Staff Directory
  • Advertise with Ars

Filter by topic

  • Biz & IT
  • Gaming & Culture

Front page layout

Some hope —

Finally, engineers have a clue that could help them save voyager 1, a new signal from humanity's most distant spacecraft could be the key to restoring it..

Stephen Clark - Mar 15, 2024 11:23 pm UTC

Artist's illustration of the Voyager 1 spacecraft.

It's been four months since NASA's Voyager 1 spacecraft sent an intelligible signal back to Earth, and the problem has puzzled engineers tasked with supervising the probe exploring interstellar space.

But there's a renewed optimism among the Voyager ground team based at NASA's Jet Propulsion Laboratory in California. On March 1, engineers sent a command up to Voyager 1—more than 15 billion miles (24 billion kilometers) away from Earth—to "gently prompt" one of the spacecraft's computers to try different sequences in its software package. This was the latest step in NASA's long-distance troubleshooting to try to isolate the cause of the problem preventing Voyager 1 from transmitting coherent telemetry data.

Cracking the case

Officials suspect a piece of corrupted memory inside the Flight Data Subsystem (FDS), one of three main computers on the spacecraft, is the most likely culprit for the interruption in normal communication. Because Voyager 1 is so far away, it takes about 45 hours for engineers on the ground to know how the spacecraft reacted to their commands—the one-way light travel time is about 22.5 hours.

The FDS collects science and engineering data from the spacecraft's sensors, then combines the information into a single data package, which goes through a separate component called the Telemetry Modulation Unit to beam it back to Earth through Voyager's high-gain antenna.

Engineers are almost entirely certain the problem is in the FDS computer. The communications systems onboard Voyager 1 appear to be functioning normally, and the spacecraft is sending a steady radio tone back to Earth, but there's no usable data contained in the signal. This means engineers know Voyager 1 is alive, but they have no insight into what part of the FDS memory is causing the problem.

But Voyager 1 responded to the March 1 troubleshooting command with something different from what engineers have seen since this issue first appeared on November 14.

"The new signal was still not in the format used by Voyager 1 when the FDS is working properly, so the team wasn’t initially sure what to make of it," NASA said in an update Wednesday. "But an engineer with the agency’s Deep Space Network, which operates the radio antennas that communicate with both Voyagers and other spacecraft traveling to the Moon and beyond, was able to decode the new signal and found that it contains a readout of the entire FDS memory."

Now, engineers are meticulously comparing each bit of code from the FDS memory readout to the memory readout Voyager 1 sent back to Earth before the issue arose in November. This, they hope, will allow them to find the root of the problem. But it will probably take weeks or months for the Voyager team to take the next step. They don't want to cause more harm.

"Using that information to devise a potential solution and attempt to put it into action will take time," NASA said.

This is perhaps the most serious ailment the spacecraft has encountered since its launch in 1977. Voyager 1 flew by Jupiter and Saturn before getting a kick from Saturn's gravity to speed into the outer solar system. In 2012, Voyager 1 entered interstellar space when it crossed the heliopause, where the solar wind, the stream of particles emanating from the Sun, push against a so-called galactic wind, the particles that populate the void between the stars.

Engineers have kept Voyager 1 and its twin, Voyager 2, alive for more than 46 years , overcoming technical problems that have doomed other space missions. Both probes face waning power from their nuclear batteries, and there are concerns about their thrusters aging and fuel lines becoming clogged, among other things. But each time there is a problem, ground teams have come up with a trick to keep the Voyagers going, often referencing binders of fraying blueprints and engineering documents from the spacecraft's design and construction nearly 50 years ago.

Suzanne Dodd, NASA's project manager for Voyager 1 and its twin, Voyager 2, recently told Ars that engineers would need to pull off their "biggest miracle" to restore Voyager 1 to normal operations. Now, Voyager 1's voice from the sky has provided engineers with a clue that could help them realize this miracle.

reader comments

Channel ars technica.

  • Scientific Visualization Studio Galleries Help

Voyager 1 Trajectory through the Solar System

Visualization centered on the Voyager 1 trajectory through the solar system.

A slightly sped-up version of the Voyager 1 visualization above, reducing the time for the Voyagers to cross the asteroid belt.

Project support

Release date, datasets used in this visualization.

Planetary ephemerides SPICE kernel

Hubble’s Brand New Image of Jupiter

Where is the edge of the solar system, voyager 2 trajectory through the solar system, revisiting the pale blue dot at 30, you may also like..., no results., an error occurred. please reload this page and try again..

May 30, 2024

Voyager 1’s Revival Offers Inspiration for Everyone on Earth

Instruments may fail, but humanity’s most distant sentinel will keep exploring, and inspiring us all

By Saswato R. Das

Illustration of Voyager spacecraft in front of a galaxy and a bright nearby star in deep space

Artist's rendering of a Voyager spacecraft in deep space.

Dotted Zebra/Alamy Stock Photo

Amid April’s litany of bad news—war in Gaza, protests on American campuses, an impasse in Ukraine—a little uplift came for science buffs.

NASA has reestablished touch with Voyager 1 , the most distant thing built by our species, now hurtling through interstellar space far beyond the orbit of Pluto. The extraordinarily durable spacecraft had stopped transmitting data in November, but NASA engineers managed a very clever work-around, and it is sending data again. Now more than 15 billion miles away, Voyager 1 is the farthest human object, and continues to speed away from us at approximately 38,000 miles per hour.

Like an old car that continues to run, or an uncle blessed with an uncommonly long life, the robotic spacecraft is a super ager that goes on and on—and, in doing so, has captivated space buffs everywhere.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

Launched on September 5, 1977, the one-ton Voyager 1 was meant to chart the outer solar system, in particular the gas giant planets Jupiter and Saturn, and Saturn’s moon, Titan. Its twin, Voyager 2 , launched the same year, followed a different trajectory with a slightly different mission to explore the outer planets before heading to the solar system’s edge.

Those were NASA’s glory days. A few years earlier, NASA had successfully landed men on the moon—and won the space race for the U.S. NASA’s engineers were the envy of the world.

To get to Jupiter and Saturn, both Voyagers had to traverse the asteroid belt, which is full of rocks and debris orbiting the sun. They had to survive cosmic rays, intense radiation from Jupiter and other perils of space. But the two spacecraft made it without a hitch.

President Jimmy Carter held office when Voyager 1 was launched from Cape Canaveral; Elvis Presley had died just three weeks before; gas was about 60 cents a gallon; and, like now, the Middle East was in crisis, with Israeli Prime Minister Menachem Begin and Egyptian President Anwar Sadat trying to find peace.

Voyager 1 sent back spectacular photos of Jupiter and its giant red spot. It showed how dynamic the Jovian atmosphere was, with clouds and storms. It also took pictures of Jupiter’s moon Io, with its volcanoes, and Saturn’s moon Titan , which astronomers think has an atmosphere similar to the primordial Earth’s. The spacecraft discovered a thin ring around Jupiter and two new Jovian moons, which were named Thebe and Metis. On reaching Saturn, it discovered five new moons as well as a new ring.

And then Voyager 1 continued on its journey and sent images back from the edge of the solar system. Many of us remember the Pale Blue Dot , a haunting picture of the Earth it took on Feb 14, 1990, when it was a distance of 3.7 billion miles from the sun. The astronomer Carl Sagan wrote:

“There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we've ever known.”

By then Voyager 1 had long outlived its planetary mission but kept faithfully calling home as it traveled beyond the solar system into the realm of the stars. By 2012 Voyager 1 had reached the heliosphere , the farthest edge of the solar system. There, it penetrated the heliopause, where the solar wind ends, stopped by particles coming from the interstellar medium, the vast space between the stars. (Astronomers know that the space between the stars is not totally empty but permeated by a rarefied gas .)

From Voyager 1, scientists learned that the heliopause is quite dynamic and first measured the magnetic field of the Milky Way beyond the solar system. And its instruments kept sending data as it traveled through the interstellar medium.

On hearing that Voyager 1 had gone dark, I had checked in with Louis Lanzerotti , a former Bell Labs planetary scientist who did the calibrations for the Voyager 1 spacecraft and was a principal investigator on many experiments. He told me that a NASA manager in the 1970s had doubted that the spacecraft’s mechanical scan platform, which pointed instruments at targets, and very thin solid state detectors, which took those edge of the solar system readings, on the spacecraft would survive. They not only survived but worked flawlessly for all this time, Lanzerotti said, providing excellent data for decades. He was overjoyed on hearing the news that Voyager 1 was still alive.

Voyager 1 instruments have power until 2025 . After that, they will shut off, one by one. But there is nothing to stop the spacecraft as it speeds away from us in the vast emptiness of space.

Thousands of years from now, maybe when the human race has left this planet, Voyager 1, the tiny little spacecraft that could, will still continue its inexorable journey to the stars.

This is an opinion and analysis article, and the views expressed by the author or authors are not necessarily those of Scientific American.

share this!

April 27, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

reputable news agency

NASA hears from Voyager 1, the most distant spacecraft from Earth, after months of quiet

by Marcia Dunn

NASA hears from Voyager 1, the most distant spacecraft from Earth, after months of quiet

NASA has finally heard back from Voyager 1 again in a way that makes sense.

The most distant spacecraft from Earth stopped sending back understandable data last November. Flight controllers traced the blank communication to a bad computer chip and rearranged the spacecraft's coding to work around the trouble.

NASA's Jet Propulsion Laboratory in Southern California declared success after receiving good engineering updates late last week. The team is still working to restore transmission of the science data.

It takes 22 1/2 hours to send a signal to Voyager 1, more than 15 billion miles (24 billion kilometers) away in interstellar space . The signal travel time is double that for a round trip.

Contact was never lost, rather it was like making a phone call where you can't hear the person on the other end, a JPL spokeswoman said Tuesday.

Launched in 1977 to study Jupiter and Saturn, Voyager 1 has been exploring interstellar space — the space between star systems — since 2012. Its twin, Voyager 2, is 12.6 billion miles (20 billion kilometers) away and still working fine.

© 2024 The Associated Press. All rights reserved. This material may not be published, broadcast, rewritten or redistributed without permission.

Explore further

Feedback to editors

voyager 1 trip

Fossil places extinct saber-toothed cat on Texas coast

8 minutes ago

voyager 1 trip

Unexpected source of nutrients fuels growth of toxic algae from Lake Erie

14 minutes ago

voyager 1 trip

Model simulates urban flood risk with an eye to equity

18 minutes ago

voyager 1 trip

Drones offer new perspective on vulnerable tide-exposed coral reefs

48 minutes ago

voyager 1 trip

Astronomers help find most distant galaxy using James Webb Space Telescope

voyager 1 trip

Understanding how zwitterionic polymers can lead to safer drugs and disease prevention

voyager 1 trip

Nanoscale engineering brings light-twisting materials to more extreme settings

voyager 1 trip

New anti-counterfeit technique packs two light-reactive images into one material

voyager 1 trip

Cheap, dirty leftovers can release pure oxygen: Hexagonal manganites show promise for production on an industrial scale

voyager 1 trip

New method could significantly reduce agricultural greenhouse gas emissions

2 hours ago

Relevant PhysicsForums posts

Will we ever communicate with extraterrestial life in a reasonable time frame, some photos of the moon, retro/prograde flyby galaxies and their bar formation.

3 hours ago

Are some objects in the night sky just older images of other objects?

10 hours ago

Solar Activity and Space Weather Update thread

17 hours ago

Questions about dark matter/energy

May 28, 2024

More from Astronomy and Astrophysics

Related Stories

voyager 1 trip

NASA's Voyager 1 resumes sending engineering updates to Earth

Apr 22, 2024

voyager 1 trip

NASA hears signal from Voyager 2 spacecraft after mistakenly cutting contact

Aug 1, 2023

voyager 1 trip

NASA listens for Voyager 2 spacecraft after wrong command cuts contact

Jul 31, 2023

voyager 1 trip

Engineers working to resolve issue with Voyager 1 computer

Dec 13, 2023

As Voyager 1's mission draws to a close, one planetary scientist reflects on its legacy

Mar 18, 2024

voyager 1 trip

NASA back in touch with Voyager 2 after 'interstellar shout'

Aug 4, 2023

Recommended for you

voyager 1 trip

Video: Fly across Nili Fossae with ESA's Mars Express

voyager 1 trip

New technique offers more precise maps of the moon's surface

May 29, 2024

voyager 1 trip

Moon orbiting 'Dinky' asteroid is actually two tiny moons stuck together

voyager 1 trip

Starless and forever alone: More 'rogue' planets discovered

voyager 1 trip

The death of Vulcan: Study reveals planet is actually an astronomical illusion caused by stellar activity

voyager 1 trip

New approach enhances accelerator's capability to uncover clues from supernovae in lunar dust

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

voyager 1 trip

The remarkable engineering triumph of the Voyager program

voyager 1 trip

In 1977, two spacecraft, Voyager 1 and 2, were launched on their mission from Cape Canaveral to explore Jupiter and Saturn. Not only did they accomplish those missions, but they also continued on to observe Uranus and Neptune, eventually reaching interstellar space, where they continue to operate and send back valuable information to scientists today. On this edition of "Weekend Insight," TPR's Jerry Clayton talks about this remarkable feat of engineering with Voyager project scientist Linda Spilker.

This conversation has been edited for length and clarity.

Clayton: Give us a quick overview of the Voyager project that started going on 47 years ago now.

Spilker: The two Voyager spacecraft launched in 1977, and their original mission was to visit the four outer planets Jupiter, Saturn, Uranus and Neptune, which Voyager 2 did, visiting all four planets. And then after that, continue to study the heliosphere. That's the bubble created by our sun crossing the heliopause. Voyager 1 crossed in 2012. Voyager 2 crossed the heliopause in 2018.

Clayton: Now, Voyager 1 is now the farthest manmade object away from Earth. Is that correct?

Spilker: That's right. Jerry. Voyager 1 is now about 15 billion miles away from the sun, and it's traveling about a million miles per day. So, getting farther away every day and it won't be coming back. It's going to continue in that space between the stars.

Clayton: That distance is mind-boggling. And what's more mind-boggling is that you're able to communicate back and forth with the spacecraft. Now, I know there have been a few communications issues over the years, but back in November of 2023, tell me what happened with Voyager 1? Did you guys think it was over with?

Spilker: Well, Voyager 1 went from one day sending back good science and engineering data until the next day just sending back a single tone, essentially like a dial tone from a phone. And there was no longer any information. And so, we were really worried that we had no information coming from the spacecraft, except we knew it was still there. And so, then the task began to figure out what had happened to Voyager 1.

Clayton: And how did you fix that problem?

Spilker: We tried a series of steps and finally identified that a chip in the flight data subsystem memory had failed, and it was stuck at a bit. And so, it was no longer working the way that it should. So we figured out we needed to move all of the computer programing the subroutines to a good portion of the memory, and then link it all back together and get it to run. And that's exactly what we did.

Clayton: How simple are these systems on board the spacecraft computer-wise compared to technology today?

Spilker: Oh, the Voyager computers are much simpler than the technology we have today. In fact, the total memory of the Voyager computers is about equivalent to what you have on your key fob. So, your cell phone is much more capable than the Voyager computers.

Clayton: So what's next for Voyager 1 and Voyager 2?

Spilker: Well, both Voyagers are going to continue to explore interstellar space. We think that they'll last it, barring any other anomalies out until about the 2030s, at which point the power will be too low to maintain operation of the spacecraft. Each of them carries a golden record , with the sights and sounds of the Earth moving out toward stars in the future. And so they'll become our silent ambassadors, carrying our message of hope and goodwill to the rest of the universe.

Is there a topic or person you'd like to hear featured on this program? Email us at [email protected]

voyager 1 trip

More From Forbes

Nasa voyager 1 back to science after glitch in interstellar space.

  • Share to Facebook
  • Share to Twitter
  • Share to Linkedin

An illustration shows a Voyager spacecraft in space. The twin Voyager 1 and Voyager 2 probes ... [+] launched in 1977.

Not bad for a 46-year-old spacecraft. NASA’s Voyager 1 is back in business after a serious glitch in November put a stop to its science work for months. The probe is humanity’s most distant emissary as it explores interstellar space—the space between stars. NASA’s ability to fix the elderly spacecraft over a great distance is a testament to perseverance and ingenuity.

Two of Voyager 1’s instruments are working again and sending back usable science data. “The mission’s science instrument teams are now determining steps to recalibrate the remaining two instruments, which will likely occur in the coming weeks,” said NASA in a statement on May 22. “The achievement marks significant progress toward restoring the spacecraft to normal operations.”

Voyager 1 is in uncharted territory with both its location and its age. The probe is over 15 billion miles away from home. It takes more than 22.5 hours for a message from Earth to reach the probe and another 22.5 hours to receive a response. That means troubleshooting works in slow motion. Voyager 1 and its twin Voyager 2 launched back in 1977, so the team is working with decades-old systems, technology and documentation. Voyager 1 became the first human-made object to leave the solar system in 2012 when it entered interstellar space. Voyager 2 took the same cosmic step in 2018.

Voyager 1’s plasma wave subsystem and magnetometer instrument are sending usable data. The team is still working on fixing the cosmic ray subsystem and low-energy charged particle instrument. This process could take weeks. “Kinda like when your power goes out and you have to go around your whole house resetting all your electronics,” the Voyager 1 team tweeted on X. “That's basically what my team and I are doing now.”

A 3-Point Cheat Sheet For Creating Romantic Chemistry—By A Psychologist

Combined wealth of taiwan’s 50 richest on forbes list rises $19 billion to $174 billion, john waters recalls how johnny depp hated teen idol phase of career.

Returning Voyager 1 to science operations has been an incremental process. The probe began sending back garbled data in late November and it took time to track down the source of the glitch . “The team eventually determined the issue stemmed from a small portion of corrupted memory in the flight data subsystem, one of the spacecraft’s three computers,” said NASA. “Among other things, this system is designed to package data from the science instruments as well as engineering data about the health and status of the spacecraft before that information is sent to Earth.”

A gold record ready to be attached to a Voyager space probe, circa 1977. The record, The Sounds Of ... [+] Earth, contains a selection of recordings of life and culture on Earth. (Photo by NASA/Hulton Archive/Getty Images)

With the source located, the team set about reworking Voyager 1’s code. By late April, the probe was once again making sense . Getting two instruments back to science work marks a major milestone in the recovery operation. Every day Voyager 1 continues to function is a small miracle. NASA’s heroic troubleshooting efforts will help scientists better understand interstellar space .

The spacecraft won’t last forever, but NASA hopes to keep at least one instrument working on both Voyager 1 and Voyager 2 until around 2025. Even if the science instruments go into retirement, the probes could stay in touch with Earth for many years to come. And there’s always the hope Voyager’s Golden Record —a phonograph record full of messages from Earth—may one day be found by intelligent life from beyond our solar system. In the meantime, Voyager 1 is back to work for as long as it will last.

Amanda Kooser

  • Editorial Standards
  • Reprints & Permissions

Join The Conversation

One Community. Many Voices. Create a free account to share your thoughts. 

Forbes Community Guidelines

Our community is about connecting people through open and thoughtful conversations. We want our readers to share their views and exchange ideas and facts in a safe space.

In order to do so, please follow the posting rules in our site's  Terms of Service.   We've summarized some of those key rules below. Simply put, keep it civil.

Your post will be rejected if we notice that it seems to contain:

  • False or intentionally out-of-context or misleading information
  • Insults, profanity, incoherent, obscene or inflammatory language or threats of any kind
  • Attacks on the identity of other commenters or the article's author
  • Content that otherwise violates our site's  terms.

User accounts will be blocked if we notice or believe that users are engaged in:

  • Continuous attempts to re-post comments that have been previously moderated/rejected
  • Racist, sexist, homophobic or other discriminatory comments
  • Attempts or tactics that put the site security at risk
  • Actions that otherwise violate our site's  terms.

So, how can you be a power user?

  • Stay on topic and share your insights
  • Feel free to be clear and thoughtful to get your point across
  • ‘Like’ or ‘Dislike’ to show your point of view.
  • Protect your community.
  • Use the report tool to alert us when someone breaks the rules.

Thanks for reading our community guidelines. Please read the full list of posting rules found in our site's  Terms of Service.

voyager 1 trip

Advertisement

How are the Voyager spacecraft able to transmit radio messages so far?

  • Share Content on Facebook
  • Share Content on LinkedIn
  • Share Content on Flipboard
  • Share Content on Reddit
  • Share Content via Email

The front of a spaceship, showing the control panel.

The two Voyage spacecraft certainly have had an amazing track record. They were sent to photograph planets like Jupiter, Saturn and Neptune and have just kept on going past the outer edge of the solar system. Voyager 1 is currently over 7 billion miles (about 11 billion kilometers) away from Earth and is still transmitting -- it takes about 10 hours for the signal to travel from the spacecraft to Earth!

The Voyager spacecraft use 23-watt radios. This is higher than the 3 watts a typical cell phone uses, but in the grand scheme of things it is still a low-power transmitter. Big radio stations on Earth transmit at tens of thousands of watts and they still fade out fairly quickly.

The key to receiving the signals is therefore not the power of the radio, but a combination of three other things:

  • Very large antennas
  • Directional antennas that point right at each other
  • Radio frequencies without a lot of man-made interference on them

The antennas that the Voyager spacecraft use are big. You may have seen people who have large satellite dish antennas in their yards. These are typically 2 or 3 meters (6 to 10 feet) in diameter. The Voyager spacecraft has an antenna that is 3.7 meters (14 feet) in diameter, and it transmits to a 34 meter (100 feet or so) antenna on Earth. The Voyager antenna and the Earth antenna are pointed right at each other. When you compare your phone's stubby, little omni-directional antenna to a 34 meter directional antenna, you can see the main thing that makes a difference!

The Voyager satellites are also transmitting in the 8 GHz range , and there is not a lot of interference at this frequency. Therefore the antenna on Earth can use an extremely sensitive amplifier and still make sense of the faint signals it receives. Then when the earth antenna transmits back to the spacecraft, it uses extremely high power (tens of thousands of watts) to make sure the spacecraft gets the message.

Frequently Asked Questions

What role do earth's ground stations play in receiving signals from distant spacecraft like voyager, how has technology advanced to maintain communication with voyager as it moves further away.

Please copy/paste the following text to properly cite this HowStuffWorks.com article:

voyager 1 trip

Things are finally looking up for the Voyager 1 interstellar spacecraft

I was once sitting with my father while Googling how far away various things in the solar system are from Earth. He was looking for exact numbers, and very obviously grew more invested with each new figure I shouted out. I was thrilled. The moon? On average, 238,855 miles (384,400 kilometers) away. The James Webb Space Telescope? Bump that up to about a million miles (1,609,344 km) away. The sun? 93 million miles (149,668,992 km) away.  Neptune ? 2.8  billion  miles (4.5 billion km) away. "Well, wait until you hear about Voyager 1," I eventually said, assuming he was aware of what was coming. He was not.

"NASA's  Voyager 1  interstellar spacecraft actually isn't even in the solar system anymore," I announced. "Nope, it's more than 15 billion miles (24 billion km)  away from us  — and it's getting even farther as we speak." I can't quite remember his response, but I do indeed recall an expression of sheer disbelief. There were immediate inquiries about how that's even physically possible. There were bewildered laughs, different ways of saying "wow," and mostly, there was a contagious sense of awe. And just like that, a new Voyager 1 fan was born.

It is easy to see why Voyager 1 is among the most beloved robotic space explorers we have — and it is thus easy to understand why so many people felt a pang to their hearts several months ago, when Voyager 1 stopped talking to us.

Related:  After months of sending gibberish to NASA, Voyager 1 is finally making sense again

For reasons unknown at the time, this spacecraft began sending back gibberish in place of the neatly organized and data-rich 0's and 1's it had been providing since its  launch in 1977 . It was this classic computer language which allowed Voyager 1 to converse with its creators while earning the title of "farthest human made object." It's how the spacecraft relayed vital insight that led to the discovery of new Jovian moons and, thanks to this sort of binary podcast, scientists incredibly identified a new ring of Saturn and created the solar system's first and only "family portrait." This code, in essence, is crucial to Voyager 1's very being.

Plus, to make matters worse, the issue behind the glitch turned out to be associated with the craft's Flight Data System, which is literally the system that transmits information about Voyager 1's health so scientists can correct any issues that arise. Issues like this one. Furthermore, because of the spacecraft's immense distance from its operators on Earth, it takes about 22.5 hours for a transmission to reach the spacecraft, and then 22.5 hours to receive a transmission back. Alas, things weren't looking good for a while — for about five months, to be precise.

But then, on April 20, Voyager 1  finally phoned home  with legible 0's and legible 1's.

"The team had gathered early on a weekend morning to see whether telemetry would return," Bob Rasmussen, a member of the Voyager flight team, told Space.com. "It was nice to have everyone assembled in one place like this to share in the moment of learning that our efforts had been successful. Our cheer was both for the intrepid spacecraft and for the comradery that enabled its recovery."

And  then,  on May 22 , Voyager scientists released the welcome announcement that the spacecraft has successfully resumed returning science data from two of its four instruments, the plasma wave subsystem and magnetometer instrument. They're now working on getting the other two, the cosmic ray subsystem and low energy charged particle instrument, back online as well. Though there technically are six other instruments onboard Voyager, those had been out of commission for some time.

The comeback

Rasmussen was actually a member of the Voyager team in the 1970s, having worked on the project as a computer engineer before leaving for other missions including  Cassini , which launched the spacecraft that taught us almost everything we currently know about Saturn. In 2022, however, he returned to Voyager because of a separate dilemma with the mission — and has remained on the team ever since.

"There are many of the original people who were there when Voyager launched, or even before, who were part of both the flight team and the science team," Linda Spilker, a planetary scientist at NASA's Jet Propulsion Laboratory, who also worked on the Voyager mission, told Space.com in the This Week from Space podcast on the TWiT network. "It's a real tribute to Voyager — the longevity not only of the spacecraft, but of the people on the team."

To get Voyager 1 back online, in rather cinematic fashion, the team devised a complex workaround that prompted the FDS to send a copy of its memory back to Earth. Within that memory readout, operators managed to discover the crux of the problem — a corrupted code spanning a single chip — which was then remedied through another (honestly,  super interesting ) process to modify the code. On the day Voyager 1 finally spoke again, "you could have heard a pin drop in the room," Spilker said. "It was very silent. Everybody's looking at the screen, waiting and watching." 

Of course, Spilker also brought in some peanuts for the team to munch on — but not just any peanuts. Lucky peanuts. 

It's a longstanding tradition at JPL to have a peanut feast before major mission events like launches, milestones and, well, the possible resurrection of Voyager 1. It  began  in the 1960s, when the agency was trying to launch the Ranger 7 mission that was meant to take pictures of and collect data about the moon's surface. Rangers 1 through 6 had all failed, so Ranger 7 was a big deal. As such, the mission's trajectory engineer, Dick Wallace, brought lots of peanuts for the team to nibble on and relax. Sure enough, Ranger 7 was a success and, as Wallace once said, "the rest is history." 

Voyager 1 needed some of those positive snacky vibes. 

"It'd been five months since we'd had any information," Spilker explained. So, in this room of silence besides peanut-eating-noises, Voyager 1 operators sat at their respective system screens, waiting. 

"All of a sudden it started to populate — the data," Spilker said. That's when the programmers who had been staring at those screens in anticipation leapt out of their seats and began to cheer: "They were the happiest people in the room, I think, and there was just a sense of joy that we had Voyager 1 back."

Eventually, Rasmussen says the team was able to conclude that the failure probably occurred due to a combination of aging and radiation damage by which energetic particles in space bombarded the craft. This is also why he believes it wouldn't be terribly surprising to see a similar failure occur in the future, seeing as Voyager 1 is still roaming beyond the distant boundaries of our stellar neighborhood just like its spacecraft twin,  Voyager 2 .

To be sure, the spacecraft isn't fully fixed yet — but it's lovely to know things are finally looking up, especially with the recent news that some of its science instruments are back on track. And, at the very least, Rasmussen assures that nothing the team has learned so far has been alarming. "We're confident that we understand the problem well," he said, "and we remain optimistic about getting everything back to normal — but we also expect this won't be the last."

In fact, as Rasmussen explains, Voyager 1 operators first became optimistic about the situation just after the root cause of the glitch had been determined with certainty. He also emphasizes that the team's spirits were never down. "We knew from indirect evidence that we had a spacecraft that was mostly healthy," he said. "Saying goodbye was not on our minds."

"Rather," he continued, "we wanted to push toward a solution as quickly as possible so other matters on board that had been neglected for months could be addressed. We're now calmly moving toward that goal."

The future of Voyager's voyage

It can't be ignored that, over the last few months, there has been an air of anxiety and fear across the public sphere that Voyager 1 was slowly moving toward sending us its final 0 and final 1. Headlines all over the internet, one written by  myself included , have carried clear, negative weight. I think it's because even if Voyager 2 could technically carry the interstellar torch post-Voyager 1, the prospect of losing Voyager 1 felt like the prospect of losing a piece of history. 

"We've crossed this boundary called the heliopause," Spilker explained of the Voyagers. "Voyager 1 crossed this boundary in 2012; Voyager 2 crossed it in 2018 — and, since that time, were the first spacecraft ever to make direct measurements of the interstellar medium." That medium basically refers to material that fills the space between stars. In this case, that's the space between other stars and our sun, which, though we don't always think of it as one, is simply another star in the universe. A drop in the cosmic ocean.

"JPL started building the two Voyager spacecraft in 1972," Spilker explained. "For context, that was only three years after we had the first human walk on the moon — and the reason we started that early is that we had this rare alignment of the planets that happens once every  176 years ." It was this alignment that could promise the spacecraft checkpoints across the solar system, including at Jupiter, Saturn, Uranus and Neptune. Those checkpoints were important for the Voyagers in particular. Alongside planetary visits come gravity assists, and gravity assists can help fling stuff within the solar system — and, now we know, beyond.

As the first humanmade object to leave the solar system, as a relic of America's early space program, and as a testament to how robust even decades-old technology can be, Voyager 1 has carved out the kind of legacy usually reserved for remarkable things lost to time.

"Our scientists are eager to see what they’ve been missing," Rasmussen remarked. "Everyone on the team is self-motivated by their commitment to this unique and important project. That's where the real pressure comes from." 

Still, in terms of energy, the team's approach has been clinical and determined. 

"No one was ever especially excited or depressed," he said. "We're confident that we can get back to business as usual soon, but we also know that we're dealing with an aging spacecraft that is bound to have trouble again in the future. That's just a fact of life on this mission, so not worth getting worked up about."

Nonetheless, I imagine it's always a delight for Voyager 1's engineers to remember this robotic explorer occupies curious minds around the globe. (Including my dad's mind now, thanks to me and Google.)

As Rasmussen puts it: "It's wonderful to know how much the world appreciates this mission."

Originally posted on Space.com .

Voyager 1 is seen with the sun in the background in this screencap from a 3D visualization of the craft.

NASA, California Institute of Technology, and Jet Propulsion Laboratory Page Header Title

  • The Contents
  • The Making of
  • Where Are They Now
  • Frequently Asked Questions
  • Q & A with Ed Stone

golden record

Where are they now.

  • frequently asked questions
  • Q&A with Ed Stone

Did You Know?

Montage of Jupiter and some of its moons.

The Voyager mission was officially approved in May 1972. Through the dedicated efforts of many skilled personnel for over three decades, the Voyagers have returned knowledge about the outer planets that had not existed in all of the preceding history of astronomy and planetary science. The Voyager spacecrafts are still performing like champs.

It must come as no surprise that there are many remarkable, "gee-whiz" facts associated with the various aspects of the Voyager mission. These tidbits have been summarized below in appropriate categories. Several may seem difficult to believe, but they are all true and accurate.

Overall Mission

The total cost of the Voyager mission from May 1972 through the Neptune encounter (including launch vehicles, radioactive power source (RTGs), and DSN tracking support) is 865 million dollars. At first, this may sound very expensive, but the fantastic returns are a bargain when we place the costs in the proper perspective. It is important to realize that:

  • on a per-capita basis, this is only 8 cents per U.S. resident per year, or roughly half the cost of one candy bar each year since project inception. the entire cost of Voyager is a fraction of the daily interest on the U.S. national debt.
  • A total of 11,000 workyears was devoted to the Voyager project through the Neptune encounter. This is equivalent to one-third the amount of effort estimated to complete the great pyramid at Giza to King Cheops.

A total of five trillion bits of scientific data had been returned to Earth by both Voyager spacecraft at the completion of the Neptune encounter. This represents enough bits to fill more than seven thousand music CDs.

The sensitivity of our deep-space tracking antennas located around the world is truly amazing. The antennas must capture Voyager information from a signal so weak that the power striking the antenna is only 10 exponent -16 watts (1 part in 10 quadrillion). A modern-day electronic digital watch operates at a power level 20 billion times greater than this feeble level.

Voyager Spacecraft

Each Voyager spacecraft comprises 65,000 individual parts. Many of these parts have a large number of "equivalent" smaller parts such as transistors. One computer memory alone contains over one million equivalent electronic parts, with each spacecraft containing some five million equivalent parts. Since a color TV set contains about 2500 equivalent parts, each Voyager has the equivalent electronic circuit complexity of some 2000 color TV sets.

Like the HAL computer aboard the ship Discovery from the famous science fiction story 2001: A Space Odyssey, each Voyager is equipped with computer programming for autonomous fault protection. The Voyager system is one of the most sophisticated ever designed for a deep-space probe. There are seven top-level fault protection routines, each capable of covering a multitude of possible failures. The spacecraft can place itself in a safe state in a matter of only seconds or minutes, an ability that is critical for its survival when round-trip communication times for Earth stretch to several hours as the spacecraft journeys to the remote outer solar system.

Both Voyagers were specifically designed and protected to withstand the large radiation dosage during the Jupiter swing-by. This was accomplished by selecting radiation-hardened parts and by shielding very sensitive parts. An unprotected human passenger riding aboard Voyager 1 during its Jupiter encounter would have received a radiation dose equal to one thousand times the lethal level.

The Voyager spacecraft can point its scientific instruments on the scan platform to an accuracy of better than one-tenth of a degree. This is comparable to bowling strike-after-strike ad infinitum, assuming that you must hit within one inch of the strike pocket every time. Such precision is necessary to properly center the narrow-angle picture whose square field-of-view would be equivalent to the width of a bowling pin.

To avoid smearing in Voyager's television pictures, spacecraft angular rates must be extremely small to hold the cameras as steady as possible during the exposure time. Each spacecraft is so steady that angular rates are typically 15 times slower than the motion of a clock's hour hand. But even this was not steady enough at Neptune, where light levels are 900 times fainter than those on Earth. Spacecraft engineers devised ways to make Voyager 30 times steadier than the hour hand on a clock.

The electronics and heaters aboard each nearly one-ton Voyager spacecraft can operate on only 400 watts of power, or roughly one-fourth that used by an average residential home in the western United States.

A set of small thrusters provides Voyager with the capability for attitude control and trajectory correction. Each of these tiny assemblies has a thrust of only three ounces. In the absence of friction, on a level road, it would take nearly six hours to accelerate a large car up to a speed of 48 km/h (30 mph) using one of the thrusters.

The Voyager scan platform can be moved about two axes of rotation. A thumb-sized motor in the gear train drive assembly (which turns 9000 revolutions for each single revolution of the scan platform) will have rotated five million revolutions from launch through the Neptune encounter. This is equivalent to the number of automobile crankshaft revolutions during a trip of 2725 km (1700 mi), about the distance from Boston,MA to Dallas,TX.

The Voyager gyroscopes can detect spacecraft angular motion as little as one ten-thousandth of a degree. The Sun's apparent motion in our sky moves over 40 times that amount in just one second.

The tape recorder aboard each Voyager has been designed to record and playback a great deal of scientific data. The tape head should not begin to wear out until the tape has been moved back and forth through a distance comparable to that across the United States. Imagine playing a two-hour video cassette on your home VCR once a day for the next 33 years, without a failure.

The Voyager magnetometers are mounted on a frail, spindly, fiberglass boom that was unfurled from a two-foot-long can shortly after the spacecraft left Earth. After the boom telescoped and rotated out of the cannister to an extension of nearly 13 meters (43 feet), the orientations of the magnetometer sensors were controlled to an accuracy better than two degrees.

Each Voyager used the enormous gravity field of Jupiter to be hurled on to Saturn, experiencing a Sun-relative speed increase of roughly 35,700 mph. As total energy within the solar system must be conserved, Jupiter was initially slowed in its solar orbit---but by only one foot per trillion years. Additional gravity-assist swing-bys of Saturn and Uranus were necessary for Voyager 2 to complete its Grand Tour flight to Neptune, reducing the trip time by nearly twenty years when compared to the unassisted Earth-to-Neptune route.

The Voyager delivery accuracy at Neptune of 100 km (62 mi), divided by the trip distance or arc length traveled of 7,128,603,456 km (4,429,508,700 mi), is equivalent to the feat of sinking a 3630 km (2260 mi) golf putt, assuming that the golfer can make a few illegal fine adjustments while the ball is rolling across this incredibly long green.

Voyager's fuel efficiency (in terms of mpg) is quite impressive. Even though most of the launch vehicle's 700 ton weight is due to rocket fuel, Voyager 2's great travel distance of 7.1 billion km (4.4 billion mi) from launch to Neptune resultsed in a fuel economy of about 13,000 km per liter (30,000 mi per gallon). As Voyager 2 streaked by Neptune and coasts out of the solar system, this fuel economy just got better and better!

The resolution of the Voyager narrow-angle television cameras is sharp enough to read a newspaper headline at a distance of 1 km (0.62 mi).

Pele, the largest of the volcanoes seen on Jupiter's moon Io, is throwing sulfur and sulfur-dioxide products to heights 30 times that of Mount Everest, and the fallout zone covers an area the size of France. The eruption of Mount St. Helens was but a tiny hiccup in comparison (admittedly, Io's surface-level gravity is some six times weaker than that of Earth).

The smooth water-ice surface of Jupiter's moon Europa may hide an ocean beneath, but some scientists believe any past oceans have turned to slush or ice. In 2010: Odyssey Two, Arthur C. Clarke wraps his story around the possibility of life developing within the oceans of Europa.

The rings of Saturn appeared to the Voyagers as a dazzling necklace of 10,000 strands. Trillions of ice particles and car-sized bergs race along each of the million-kilometer-long tracks, with the traffic flow orchestrated by the combined gravitational tugs of Saturn, a retinue of moons and moonlets, and even nearby ring particles. The rings of Saturn are so thin in proportion to their 171,000 km (106,000 mi) width that, if a full-scale model were to be built with the thickness of a phonograph record the model would have to measure four miles from its inner edge to its outer rim. An intricate tapestry of ring-particle patterns is created by many complex dynamic interactions that have spawned new theories of wave and particle motion.

Saturn's largest moon Titan was seen as a strange world with its dense atmosphere and variety of hydrocarbons that slowly fall upon seas of ethane and methane. To some scientists, Titan, with its principally nitrogen atmosphere, seemed like a small Earth whose evolution had long ago been halted by the arrival of its ice age, perhaps deep-freezing a few organic relics beneath its present surface.

The rings of Uranus are so dark that Voyager's challenge of taking their picture was comparable to the task of photographing a pile of charcoal briquettes at the foot of a Christmas tree, illuminated only by a 1 watt bulb at the top of the tree, using ASA-64 film. And Neptune light levels will be less than half those at Uranus.

Through the ages, astronomers have argued without agreeing on where the solar system ends. One opinion is that the boundary is where the Sun’s gravity no longer dominates – a point beyond the planets and beyond the Oort Cloud. This boundary is roughly about halfway to the nearest star, Proxima Centauri. Traveling at speeds of over 35,000 miles per hour, it will take the Voyagers nearly 40,000 years, and they will have traveled a distance of about two light years to reach this rather indistinct boundary.

But there is a more definitive and unambiguous frontier, which the Voyagers will approach and pass through. This is the heliopause, which is the boundary area between the solar and the interstellar wind. When Voyager 1 crosses the solar wind termination shock, it will have entered into the heliosheath, the turbulent region leading up to the heliopause. When the Voyagers cross the heliopause, hopefully while the spacecraft are still able to send science data to Earth, they will be in interstellar space even though they will still be a very long way from the “edge of the solar system”. Once Voyager is in interstellar space, it will be immersed in matter that came from explosions of nearby stars. So, in a sense, one could consider the heliopause as the final frontier.

Barring any serious spacecraft subsystem failures, the Voyagers may survive until the early twenty-first century (~ 2025), when diminishing power and hydrazine levels will prevent further operation. Were it not for these dwindling consumables and the possibility of losing lock on the faint Sun, our tracking antennas could continue to "talk" with the Voyagers for another century or two!

IMAGES

  1. Voyager 1 Takes Our First Steps To the Stars. Or Has It?

    voyager 1 trip

  2. It's Official Voyager 1 has Finally Reached Interstellar Space

    voyager 1 trip

  3. Voyager 1 Celebrates 40 Years Of Space Travel

    voyager 1 trip

  4. Where Truly Is Voyager 1?

    voyager 1 trip

  5. Voyager 1 Launch

    voyager 1 trip

  6. Voyager 1

    voyager 1 trip

VIDEO

  1. Nasa Warns Us That Voyager 1 Made An Encounter In Deep Space

  2. Voyager 1 Stuns NASA with Mysterious Encounter in Interstellar Space

  3. Voyager 1 Resumes Sending Updates to Earth

  4. (Voyager 1 Tribute) Audiomachine

  5. Amazing facts about Voyager 1

  6. Voyager 1: Journey to the Edge of the Solar System 🚀🪐

COMMENTS

  1. Voyager

    The elapsed time it takes for light (or radio signals) to travel between the Earth and a celestial object. Note: Because Earth moves around the Sun faster than Voyager 1 or Voyager 2 is traveling from Earth, the one-way light time between Earth and each spacecraft actually decreases at certain times of the year. Cosmic Ray Data

  2. NASA's Voyager 1 Resumes Sending Engineering Updates to Earth

    The probe and its twin, Voyager 2, are the only spacecraft to ever fly in interstellar space (the space between stars). Voyager 1 stopped sending readable science and engineering data back to Earth on Nov. 14, 2023, even though mission controllers could tell the spacecraft was still receiving their commands and otherwise operating normally.

  3. Voyager

    Mission Overview. The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-40-year journey since their 1977 launches, they each are much farther away from Earth and the sun than Pluto. In August 2012, Voyager 1 made the historic entry into interstellar space, the region between ...

  4. 45 Years Ago: Voyager 1 Begins its Epic Journey to the Outer ...

    Today, 45 years after its launch and 14.6 billion miles from Earth, four of Voyager 1's 11 instruments continue to return useful data, having now spent 10 years in interstellar space. Signals from the spacecraft take nearly 22 hours to reach Earth, and 22 hours for Earth-based signals to reach the spacecraft.

  5. Voyager 1

    About the mission. Voyager 1 reached interstellar space in August 2012 and is the most distant human-made object in existence. Launched just shortly after its twin spacecraft, Voyager 2, in 1977, Voyager 1 explored the Jovian and Saturnian systems discovering new moons, active volcanoes and a wealth of data about the outer solar system.

  6. Mission Overview

    The twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-45-year journey since their 1977 launches, they each are much farther away from Earth and the Sun than Pluto. ... Human Space Travel Research; Explore; Search Submit. News & Events. Multimedia. NASA+; Voyager. Home. Voyager ...

  7. Voyager 1: 'The Spacecraft That Could' Hits New Milestone

    Voyager 1, already the most distant human-made object in the cosmos, reaches 100 astronomical units from the sun on Tuesday, August 15 at 5:13 p.m. Eastern time (2:13 p.m. Pacific time). ... The spacecraft have really been put to the test during their nearly 30 years of space travel, flying by the outer planets, and enduring such challenges as ...

  8. Voyager 1, Now Most Distant Human-made Object in Space

    At approximately 2:10 p.m. Pacific time on February 17, 1998, Voyager 1, launched more than two decades ago, will cruise beyond the Pioneer 10 spacecraft and become the most distant human-created object in space at 10.4 billion kilometers (6.5 billion miles.) The two are headed in almost opposite directions away from the Sun.

  9. NASA Spacecraft Embarks on Historic Journey into Interstellar Space

    NASA. Sep 12, 2013. RELEASE 13-280. NASA's Voyager 1 spacecraft officially is the first human-made object to venture into interstellar space. The 36-year-old probe is about 12 billion miles (19 billion kilometers) from our sun. New and unexpected data indicate Voyager 1 has been traveling for about one year through plasma, or ionized gas ...

  10. Voyager

    This is a real-time indicator of Voyager 1's distance from Earth in astronomical units (AU) and either miles (mi) or kilometers (km). Note: Because Earth moves around the sun faster than Voyager 1 is speeding away from the inner solar system, the distance between Earth and the spacecraft actually decreases at certain times of year.

  11. Voyager 1

    Voyager 1 is a space probe launched by NASA on September 5, 1977, ... 155 but could have been altered to avoid a Titan flyby and travel from Saturn to Pluto, arriving in 1986. Crescent Saturn from 5.3 million km, four days after closest approach.

  12. Inside NASA's monthslong effort to rescue the Voyager 1 mission

    Inside NASA's 5-month fight to save the Voyager 1 mission in interstellar space. The Voyager 1 probe is the most distant human-made object in existence. After a major effort to restore ...

  13. Voyager 1's Mission to the Outer Planet Begins

    The Voyager mission was designed to take advantage of a rare geometric arrangement of the outer planets in the late 1970s and the 1980s which allowed for a four-planet tour with a minimum of propellant and trip time. This layout of Jupiter, Saturn, Uranus and Neptune, which occurs about every 175 years, allows a spacecraft on a particular flight path to swing from one planet to the next ...

  14. Voyager 1: Facts about Earth's farthest spacecraft

    Voyager 1 is the first spacecraft to travel beyond the solar system and reach interstellar space . The probe launched on Sept. 5, 1977 — about two weeks after its twin Voyager 2 — and as of ...

  15. Finally, engineers have a clue that could help them save Voyager 1

    Because Voyager 1 is so far away, it takes about 45 hours for engineers on the ground to know how the spacecraft reacted to their commands—the one-way light travel time is about 22.5 hours.

  16. NASA SVS

    This visualization tracks the trajectory of the Voyager 1 spacecraft through the solar system. Launched on September 5, 1977, it was one of two spacecraft sent to visit the giant planets of the outer solar system. Voyager 1 flew by Jupiter and Saturn before being directed out of the solar system.To fit the 40 year history of the mission into a short visualization, the pacing of time ...

  17. Voyager 1's Revival Offers Inspiration for Everyone on Earth

    Opinion. May 30, 2024. 4 min read. Voyager 1's Revival Offers Inspiration for Everyone on Earth. Instruments may fail, but humanity's most distant sentinel will keep exploring, and inspiring ...

  18. Where Are They Now?

    Voyager 1 Present Position. This simulated view of the solar system allows you to explore the planets, moons, asteroids, comets, and spacecraft exploring our solar system. You can also fast-forward and rewind in real-time. NASA/JPL-Caltech.

  19. NASA hears from Voyager 1, the most distant spacecraft from Earth

    It takes 22 1/2 hours to send a signal to Voyager 1, more than 15 billion miles (24 billion kilometers) away in interstellar space. The signal travel time is double that for a round trip.

  20. After crisis in interstellar space, stream of Voyager 1 data resumes

    Voyager 1, one of the celebrated twin spacecraft that was the first to reach interstellar space, has finally resumed beaming science data back to Earth after a 6-month communications blackout, NASA announced this week. After a corrupted chip rendered Voyager 1's transmissions unintelligible in November 2023, engineers nursed the spacecraft ...

  21. Voyager

    Voyager 1 flew within 64,200 kilometers (40,000 miles) of the cloud tops, while Voyager 2 came within 41,000 kilometers (26,000 miles). Saturn is the second largest planet in the solar system. It takes 29.5 Earth years to complete one orbit of the Sun, and its day was clocked at 10 hours, 39 minutes.

  22. The remarkable engineering triumph of the Voyager program

    On this edition of "Weekend Insight," TPR's Jerry Clayton talks about this remarkable feat of engineering with Voyager project scientist Linda Spilker. This conversation has been edited for length and clarity. Clayton: Give us a quick overview of the Voyager project that started going on 47 years ago now. Spilker: The two Voyager spacecraft ...

  23. NASA Voyager 1 Back To Science After Glitch In Interstellar Space

    Voyager 1 lives. The 46-year-old spacecraft is back to interstellar science after NASA repaired a glitch from 15 billion miles away. There's more recovery work ahead.

  24. How do the Voyager spacecraft transmit radio signals so far

    Voyager 1 is currently over 7 billion miles (about 11 billion kilometers) away from Earth and is still transmitting -- it takes about 10 hours for the signal to travel from the spacecraft to Earth! The Voyager spacecraft use 23-watt radios. This is higher than the 3 watts a typical cell phone uses, but in the grand scheme of things it is still ...

  25. Voyager

    Present Status. As of April 2020, Voyager 1 is at a distance of 22.3 billion kilometers (149.0 AU) from the Sun. Voyager 2 was at a distance of 18.5 billion kilometers (123.6 AU). Voyager 1 is escaping the solar system at a speed of about 3.6 AU per year. Voyager 2 is escaping the solar system at a speed of about 3.3 AU per year.

  26. Things are finally looking up for the Voyager 1 interstellar ...

    Alas, things weren't looking good for a while — for about five months, to be precise. But then, on April 20, Voyager 1. finally phoned home. with legible 0's and legible 1's. "The team had ...

  27. Voyager

    Voyager's fuel efficiency (in terms of mpg) is quite impressive. Even though most of the launch vehicle's 700 ton weight is due to rocket fuel, Voyager 2's great travel distance of 7.1 billion km (4.4 billion mi) from launch to Neptune resultsed in a fuel economy of about 13,000 km per liter (30,000 mi per gallon).